Publishing Attributed Social Graphs with Formal Privacy Guarantees

Zach Jorgensen

Graham Cormode

g.cormode@warwick.ac.uk

Ting Yu

Releasing Attributed Graph Data

- Social Network Analysis has a wide range of applications
 - Marketing, disease transmission analysis, sociology...
- ◆ Real graphs (e.g. social networks) have attributes
 - Different types of node, different types of edge
- Information in social graphs is very sensitive
 - Religious, political, sexual, financial, personal, health etc.
 - We want realistic social graph data with privacy guarantees
- Prior work releases core statistics under (differential) privacy
 - Counts of small subgraphs like stars, triangles, cliques etc.
 - These counts are parameters for graph models
 - Sensitivity of these counts is large: one edge can change a lot
- We aim to release (private, synthetic) attributed graphs

Attributed Social Graphs

- Graph represented by nodes N, edges E, and attributes X
 - For every $v_i \in N$, there is a w-dimensional attribute vector $x_i \in X$
- For simplicity, assume undirected edges, binary attributes

Example:

$$\begin{aligned} & \textit{w} = 1 \text{ attribute, } \textit{political views} \\ & \textit{L} = \textit{Left-wing (0)} \quad \textit{R} = \textit{Right-wing (1)} \\ & \textit{N} = \{\textit{v}_1, \ldots, \textit{v}_9\} \\ & \textit{E} = \{\textit{e}_{13}, \, \textit{e}_{15}, \, \textit{e}_{24}, \, \textit{e}_{27}, \, \textit{e}_{29}, \, \ldots \} \\ & \textit{X} = \{\langle \textit{0} \rangle, \, \langle \textit{0} \rangle, \, \langle \textit{0} \rangle, \, \langle \textit{1} \rangle, \, \ldots, \, \langle \textit{0} \rangle \} \end{aligned}$$

Privacy Model

- Differential Privacy for Attributed Graphs
 - Neighboring graphs differ in the presence of a single edge or the attributes associated with a single node.
 [Blo13]

Building blocks for the private model

- \bullet Node-attribute distribution, Θ_x : prior distribution of attributes
 - Compute 2^w counts, add Laplace noise (histogram q
- ◆ Attribute-Edge correlations, ○_F: probability of an edge given the two node values
 - Query has high "sensitivity" if node degrees are larg
 - Use edge truncation to bound the degree of nodes
- ◆ Structural model for the graph edges , ⊙_M:
 - We propose a new privacy-friendly model called TriCycle
 - The parameters are the degree sequence and number of triangles
 - These can be found accurately under DP

System overview

Experimental Snapshot

- Results on a large social network with strong privacy ($\varepsilon=0.01$)
 - Measure mean absolute error for different parameters

Summary

- Important to release social graphs with privacy
 - Full paper proposes a framework for these releases
 - Can accommodate different graph and correlation models
- Experiments show good fidelity of synthetic graphs
 - Larger inputs allow better (private) estimation of parameters
- Many natural extensions to richer graph models are possible
 - E.g. include directed edges, more attribute types
- Yet stronger privacy models (e.g. node differential privacy) remain a particular challenge

Work supported by Royal Society, European Commission