
Permutation Editing and
Matching via Embeddings

Graham Cormode, S. Muthukrishnan,
Cenk Sahinalp

(grahamc@dcs.warwick.ac.uk)



Permutation Editing and Matching

• Why study permutations?

• Distances between permutations

• Approximating permutation distances with
embeddings into well studied spaces

• Some applications — Pattern Matching,
Approximate Nearest / Furthest Neighbors



Why study Permutations?

• Permutations model (simplistically) biological sequences

• Distances on permutations give explanations of evolutionary
behaviour

• Problems on permutations give insight onto problems on strings

• Nice, clean combinatorial problems: we treat all permutations
as an arrangement of integers 1 to n



Distances between permutations
How “close” are two permutations P and Q?

One approach: allow certain editing operations.
The number of editing operations needed to
turn P into Q is their distance.

Consider the transposition distance:

1 3 5 6 8 4 2 7 1 3 4 2 5 6 8 7

The minimum number of transpositions needed to turn P
into Q is their Transposition Distance, t(P,Q).



Approximating Transposition Distance
No efficient way to find Transposition Distance is known

Try to find a guaranteed approximation instead:
• Extend every permutation so that the first element is 0,
the last is n+1
• Count the number of “transposition breakpoints”:
when j immediately follows i in Q but not in P

The number of Transposition Breakpoints gives a
3-approximation for the Transposition Distance

P: 0 3 6 5 1 2 4 7      Q: 0 5 1 2 3 6 4 7



Approximating Transposition Distance II

Proof of the claim:

— Any transposition can remove at most 3 transposition
breakpoints (because only 3 adjacencies change)

— Can remove at least one breakpoint per transposition

Q: 0 Q1 … Qi Qi+1 … … … Qn n+1

P: 0 Q1 … Qi Pj … Qi+1 … Pn n+1

Therefore, the true transposition distance is at most the # of
breakpoints, and at least 1/3 the # of breakpoints



Transforming into Hamming Distance
We can embed into the Hamming space of binary strings, H

The transform: Build a binary matrix for a permutation, T(P)
so that T(P)[i,j] = 1 if j immediately follows i in P
and T(P)[i,j] = 0 otherwise

Each Transposition breakpoint between P and Q corresponds
to a place where T(P) = 1 and T(Q) = 0, and vice-versa.

∴ The Hamming distance of these matrices leads to a
3-approximation for the Transposition distance. !

Can improve this to 9/4 approx using Walter, Dias, Meidanis '00



The value of the embedding approach
• The transformation of P is completely independent of Q
• Hamming distance is a well understood, well studied distance
• Many interesting problems have been solved for Hamming
distance:

- Approximation using O(log 1/δ) bits of communication
- “Sketching” using a sublinear size sketch
- Approximate Nearest Neighbors, sublinear query cost
- Clustering problems
- Many more…

Instead of solving these problems directly for Transposition
Distance, we can use the solutions for Hamming Distance
to immediately give solutions for Transposition Distance.



Permutation Edit Distance
Permutation Edit Distance, e(P,Q): 

Permitted operation is to move a single symbol at a time 

1 3 4 2 3 4 1 2

This can be much larger than the Transposition Distance

eg P = 1 2 3 … 2n Q = n+1 n+2… 2n 1 2 … n

t(P,Q) = 1 but e(P,Q) = n

Similar to character based (string) edit distances



Embedding into Intersection
Define:
A(P)[i,j] = 1 if i occurs exactly 2k before j in P (for some k)
A(P)[i,j] = 0 otherwise

B(Q)[i,j] = 1 if j occurs before i in Q
B(Q)[i,j] = 0 otherwise

Intersection Size between two bit vectors, X and Y
I(X,Y) = number of places where X & Y are both 1

Claim: e(P,Q) ≤ Ι(Α(P),B(Q)) ≤ log n · e(P,Q)

That is, the intersection size of A(P) and B(Q) is a
log n-approximation for Permutation Edit Distance



Example of permutation editing
P =  5   2   3   4   1   7   6   8 
Q = 5   8   3   1   2   7   6   4

What does I(A(P),B(Q)) tell us?
- that we should count one for every pair i,j
where i occurs 2k before j in P but the other way round in Q.

P =  5   2   3   4   1   7   6   8 

Here, I(A(P),B(Q)) = 6,  e(P,Q) = 3,  log n = 3 so 
e(P,Q) ≤ Ι(Α(P),B(Q)) ≤ log n · e(P,Q)

Each “intersecting” pair tells us that one of them must be moved.

Mark on P which pairs contribute to I(A(P),B(Q))



Upper bound
I(A(P),B(Q)) ≤ log n e(P,Q)

Suppose one move picks up j and puts it in a new place.
There are at most log n i’s for which A(P)[i,j] = 1
Hence I(A(P),B(Q)) changes by at most log n for any move.

When we have finished, we have made Q, and I(A(Q),B(Q))=0
So overall, we have to reduce I(A(P),B(Q)) to zero
It can reduce by at most log n per move
So log n ⋅ e(P,Q) must be at least I(A(P),B(Q)). !



Lower bound
e(P,Q) ≤ Ι(A(P),B(Q))

Notionally relabel Q so it is 1 … n, and apply the relabelling to P 
Q = 5   8   3   1   2   7   6   4 P = 5   2   3   4   1   7   6   8
       ↓   ↓  ↓   ↓   ↓  ↓   ↓  ↓          ↓   ↓  ↓   ↓   ↓  ↓   ↓  ↓
Q'= 1  2  3  4  5  6  7  8  P' = 1  5  3  8  4  6  7  2

To transform P' into Q', have to move everything that is 
not in a Longest Increasing Subsequence (LIS).
So e(P,Q) = e(P',Q') = n - LIS(P')

Also note that I(A(P'),B(Q')) counts one for each pair in P'
where P'[i] > P'[i + 2k] for some k.



Lower bound
Consider only the adjacent items: 1  5  3  8  4  6  7  2
Count the number of “breaks” as b(P') — here, b(P') = 3

Split P' two interleaved parts: P'odd = 1     3     4      7
P'even =    5     8      6      2

Consider extending LIS of P'odd to be an increasing sequence of P'.
Betwen 2 consecutive members of LIS(P'odd), either we can
include a member of P'even, or else there is a failed comparison.

This results in an Increasing Subsequence, whose length is at most 
LIS(P'), by definition.

So LIS(P') ≥ LIS(P'odd) + (LIS(P'odd) - b(P'))



Lower bound
So  LIS(P') ≥ 2 LIS(P'odd) - b(P')
Symmetrically LIS(P') ≥ 2 LIS(P'even) - b(P')
Sum and halve these LIS(P') ≥ LIS(P'even) + LIS(P'odd) - b(P') *

Now split P'even and P'odd into odd and even halves, and repeat
the argument… keep going until we reach unit length sequences.
The LIS of a unit length sequence is trivially 1.

Substitute back into *:
LIS(P') ≥ 1 + 1 + … + 1 - b(P') - b(P'even) - b(P'odd) - ...{ {= n = -I(A(P'),B(Q'))

Hence I(A(P),B(Q)) ≥ n - LIS(P') = e(P',Q') = e(P,Q) !



Consequences
Permutation Edit Distance can be approximated by
comparing independent binary matrices.

Intersection size is harder to deal with than Hamming
distance, so we don’t get so many “free” results

This approach lets us solve some problems quickly
eg Approximate Pattern Matching

Given a long string T and a permutation P, find the
approx. cost of matching P at each location in T.



Further consequences

The weight of these matrices is fixed, |A(P)| = n log n

and one is much smaller than the other |B(Q)| = n2/2

So can approximate |A(P) ∩ B(Q)| with

n2/2 |A(P) ∩ B(Q)| / |A(P) ∪ B(Q)|

Can find eg Approx Furthest Neighbors under this measure after
preprocessing with sublinear time per query: adapt the results of
Indyk-Motwani `98, with appropriate Locality Sensitive Hash
functions.



Conclusions
Extensions that can be made

• Distances based on reversals of sections of permutations
• Allow insertions / deletions so P and Q are not exact perms.
• Allow 1 of P or Q to be a string (contain repeats)
• Combinations of operations eg Reversals and Transpositions
• Any mixture of the above!

Future Directions
• Better approximations
• Different Embeddings, eg Edit Distance to Hamming Dist?
• Other approaches to Nearest Neighbors under edit distances.
• Similar transforms for distances between strings?
• Other applications?


