Constrained Private Mechanisms for Count Data

Graham Cormode

g.cormode@warwick.ac.uk

Tejas Kulkarni (ATI/Warwick)

Divesh Srivastava (AT&T)

Private Data Release

Many problems require collection of aggregate data

- Simple count queries for statistics
- Frequency parameters of analytic models
- The model of Differential Privacy (DP) gives a rigorous statistical definition

- Requires each output to have a similar probability as inputs vary
- Our aim is to design *mechanisms* that have nice properties
 - A mechanism defines the output distribution, given the input
 - We seek accurate, usable outputs, from small groups

Mechanism Design

• We want to construct optimal mechanisms for data release

- Target function: each user has a bit; release the sum of bits
- Input range = output range = {0, 1, ... n}
- Model a mechanism as a matrix of conditional probabilities Pr[i|j]
- ◆ DP introduces constraints on the matrix entries:
 α Pr[i|j] ≤ Pr[i|j+1]
 - Neighboring entries should differ by a factor of at most $0 < \alpha < 1$
- We want to penalize outputs that are far from the truth: Define loss function L_p = ∑_{i,j} w_j Pr[i|j] |i − j|^p for weights (prior) w_j
 - We will focus on the core case of p=0, and uniform prior
 - L₀ loss function is then just the sum of weights off-diagonal
 - Equivalently, maximize trace of the probability matrix

Unconstrained Mechanism: GM

Optimizing for L₀ loss function yields a highly structured result:

$$\begin{pmatrix} \mathbf{x} & x\alpha & x\alpha^2 & x\alpha^3 & \cdots & x\alpha^n \\ y\alpha & \mathbf{y} & y\alpha & y\alpha^2 & \cdots & y\alpha^{n-1} \\ y\alpha^2 & y\alpha & \mathbf{y} & y\alpha & \cdots & y\alpha^{n-2} \\ y\alpha^3 & y\alpha^2 & y\alpha & \mathbf{y} & \cdots & y\alpha^{n-3} \\ y\alpha^4 & y\alpha^3 & y\alpha^2 & y\alpha & \cdots & y\alpha^{n-4} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x\alpha^n & x\alpha^{n-1} & x\alpha^{n-2} & x\alpha^{n-3} & \cdots & \mathbf{x} \end{pmatrix}$$

• Here x = $1/(1+\alpha)$, y= $(1-\alpha)/(1+\alpha)$, L₀= $2\alpha/(1+\alpha)$

This is the truncated geometric mechanism GM [Ghosh et al. 09]:

- Add symmetric geometric noise with parameter α to true answer
- Truncate to range {0...n}
- We prove this is the unique such optimal mechanism for L₀
 - But it has some issues!

Limitations of GM

• GM tends to place a lot of weight on $\{0, n\}$ when α is large

- But GM's L₀ score is the optimal value: $2\alpha / (1+\alpha)$
- The issue is even worse if optimizing for L₁ or L₂ objective functions!
- We seek more structured mechanisms that have similar score

Mechanism Properties

We give 7 constraints to impose more structure on mechanisms:

- ♦ Row Honesty RH: ∀ i,j : Pr[i|i] ≥ Pr[i|j] (true value is most likely)
- Row Monotonicity RM: prob. decreases from Pr[i|i] along row
 - Row Monotonicity implies Row Honesty
- Column Honesty CH and Column Monotonicity CM, symmetrically
- ◆ Fairness F: ∀ i, j : Pr[i|i] = Pr[j|j] (same probability of truthfulness)
 - Fairness and row honesty implies column honesty
- ♦ Weak honesty WH: Pr[i|i] ≥ 1/(n+1) (at least uniformly truthful)
 - Achievable by the trivial uniform mechanism UM Pr[i|j] = 1/(n+1)
- ♦ Symmetry: ∀ i, j : Pr[i|j] = Pr[n-i|n-j]
 - Symmetry is achievable with no loss of objective function

Finding Optimal Mechanisms

- Goal: find optimal mechanisms for a given set of properties
- Can solve with optimization techniques
 - Objective function is linear in the variables Pr[i|j]
 - Properties can all be specified as linear constraints on Pr[i|j]s
 - DP property is a linear constraint on Pr[i|j]s
- So can specify any desired set of combinations and solve an LP
 - Always feasible: just uniform guessing (UM) meets all constraints

Patterns emerge: of 127 possibilities, only few distinct outcomes

- Aim to understand the structure of optimal mechanisms
- We seek explicit constructions
 - More efficient and amenable to analysis than solving LPs

Explicit Fair Mechanism EM

We construct a new 'explicit fair mechanism' (uniform diagonal):

(у	yα	$y \alpha^2$	$y\alpha^3$	$y\alpha^4$	$y\alpha^4$	$y\alpha^4$	$y\alpha^4$
yα	у	yα	$y \alpha^2$	$y\alpha^3$	$y\alpha^3$	$y\alpha^3$	$y\alpha^3$
yα	yα	у	yα	$y \alpha^2$	$y\alpha^3$	$y\alpha^3$	$y\alpha^3$
$y\alpha^2$	$y\alpha^2$	yα	у	yα	$y \alpha^2$	$y \alpha^2$	$y\alpha^2$
$y\alpha^2$	$y\alpha^2$	$y\alpha^2$	yα	У	yα	$y \alpha^2$	$y\alpha^2$
$y\alpha^3$	$y\alpha^3$	$y\alpha^3$	$y \alpha^2$	yα	У	yα	yα
$y\alpha^3$	$y\alpha^3$	$y\alpha^3$	$y\alpha^3$	$y\alpha^2$	yα	У	yα
$\sqrt{y\alpha^4}$	$y\alpha^4$	$y\alpha^4$	$y\alpha^4$	$y\alpha^3$	$y\alpha^2$	yα	_ y]

- Each column is a permutation of the same set of values
- Has all our properties: column & row monotonicity, symmetry
- This is (one) optimal fair mechanism:
 - Entries in middle column are all as small as DP will allow
 - Hence y cannot be bigger
- Cost slightly higher than Geometric Mechanism

Summary of mechanisms

Based on relations between properties, we can conclude:

- Fair Mechanism (EM) and Geometric Mechanism (GM) have explicit forms
- Two Weak Mechanism variants (WM) found by solving LPs

Property	GM	UM	EM	WM
Symmetry (S)	Y	Y	Y	Y
Row Monotone (RM)	Y	Y	Y	Y
Column Monotone (CM)		Y	Y	Y
Fairness (F)	Ν	Y	Y	Ν
Weak Honesty (WH)		Y	Y	Y
\mathbb{L}_0	$\frac{2\alpha}{1+\alpha}$	1	$\approx \frac{2\alpha}{1+\alpha} \cdot \frac{n+1}{n}$	$\geq \frac{2\alpha}{1+\alpha}$

THE UNIVERSITY OF

Comparing Mechanisms

• Heatmaps comparing mechanisms for $\alpha = 0.9$, n=4

Heatmaps look very different but their L₀ scores are close:

	GM	EM	WM
L ₀ score	0.764	0.776	0.774

L₀ score behaviour

• L_0 score varies as a function of n and α

– WM converges on GM for $n \ge 2\alpha / (1-\alpha)$

Performance on real data

Using UCI Adult data set of demographic data

- Construct small groups in the data, target different binary attributes
- Compute Root-Mean-Squared Error of per-group outputs
- EM and WM generally preferable for wide range of α values

Summary

- Carefully crafted mechanisms for data release can fix anomalies/unexpected behavior for small groups
- Many more natural questions for small groups
 - Interpret constraints as regularization
 - Find closed form solutions for other objective functions (L_1, L_2)
- More general data release problems:
 - Structured data: other statistics, graphs, movement patterns
 - Unstructured data: text, images, video?

Supported by AT&T, Warwick, Alan Turing Institute, European Commission

