
Tracking Inverse Distributions
of Massive Data Streams

Graham Cormode
cormode@bell-labs.com

Network Monitoring

Today’s converged networks bring many new challenges for
monitoring

� Massive scale of data and connections

� No centralized control, inability to police what is connected

� Attacks, malicious usage, malware, misconfigurations…

� No per-connection records or infrastructure

IMS Network

CSCF

HSS AS

Cable, DSL
PSTN

Enterprise
Wireless

RNC

PSTN

Scale of Data
• IP Network Traffic: up to 1 Billion

packets per hour per router. Each
ISP has many (hundreds) of routers

• Scientific data: NASA's observation
satellites each generate billions of
readings per day.

• Compare to "human scale" data:
“only” 1 billion worldwide credit
card transactions per month.

� “Only” 3 Billion Telephone Calls in
US each day

� “Only” 30 Billion emails daily, 1
Billion SMS, IMs.

CC trans
US Phone

Satellite

Email

IP Router

Doing anything at all
with such massive
data is a challenge

Analysis Challenges

� Real-time security, attack detection and defense (DoS, worms)

� Service Quality Management

� Abuse tracking (bandwidth hogs, malicious calling, zombies)

� Usage tracking/billing, SLA enforcement

Focus
� In this talk, focus on inherent algorithmic challenges in

analyzing high speed data in real time or near real time.

� Must solve fundamental problems with many applications.

� We cannot store all the data, in fact can only retain a tiny
fraction, and must process quickly (at line speed)

� Exact answers to many questions are impossible without
storing everything.

� We must use approximation and randomization with strong
guarantees

� Techniques used are algorithm design, careful use of
randomization and sampling.

Computation Model
Formally, we observe a stream of data, each update arrives

once, and we have to compute some function of interest.

Analyze the resources needed, in terms of time per update,
space, time for computing the function, communication and
other resources.

Ideally, all of these should be sublinear in size of input, n

Three settings, depending on number of monitoring places:

� One: a single, centralized monitoring location

� Two: a pair of monitoring locations and we want to
compute the difference between their streams

� Many: a large number of monitoring points and we want to
compute on the union of all the streams

Outline
� inverse

defining the inverse distribution

�one
monitoring occurs at a
single centralized location

� two
monitoring the difference
between two locations
(eg both ends of a link)

�many
continuously monitoring
multiple locations

The title is a play on words
because when Jan's reflection
comes to life, Jan discovers
that two is one too many.

Motivating Problems
– How many people made less than five VoIP calls today?

– Which are the most frequently called numbers?

– What is most frequent number of calls made?

– What is median call length?

– What is median number of calls?

– How many calls did subscriber S make?

Can classify these questions into two types: questions on the
forward distribution and on the inverse distribution.

INV

FWD

INV

FWD

INV

FWD

callers frequencies

forward distribution

inverse
distribution

The Forward Distribution
We abstract the traffic distribution. See one item at a time

(eg new call from x to y)

Forward distribution f[0…U],
f(x) = number of calls / bytes / packets etc. from x

How many calls did S make? Find f(S)

Most frequently caller? Find x s.t. f(x) is greatest

Can study frequent items / heavy hitters, quantiles /
medians, Frequency moments, distinct items, draw
samples, correlations, clustering, etc…

Lot of work over the past 10 years on the forward
distribution

The Inverse Distribution
Inverse distribution is f-1[0…N],

f-1(i) = fraction of users making i calls.
= |{ x : f(x) = i, i≠0}|/|{x : f(x) ≠ 0}|

F-1(i) = cumulative distribution of f-1
= ∑j > i f-1(j) [sum of f-1(j) above i]

Number of people making < 5 calls = 1 – F-1(5)

Most frequent number of calls made = i s.t. f-1(i) is greatest

If we have full space, it is easy to go between forward and
inverse distribution.

But in small space it is much more difficult, and existing
methods in small space don’t apply.

Essentially no prior work has looked closely at the inverse
distribution in small space, high speed settings.

Example

Separation between inverse distribution:
Consider tracking a simple point query on each distribution.
Eg. Find f(9085827700): just count every time a call
involves this party

But finding f-1(2) is provably hard: can’t track exactly how
many people made 2 calls without keeping full space

Even approximating up to some constant factor is hard.

7/7
6/7
5/7
4/7
3/7
2/7
1/7

F-
1 (

x)

1 2 3 4 5

f -
1 (

x)

i1 2 3 4 5

3/7
2/7
1/7

i

f(x
)

x

5
4
3
2
1

Outline
� inverse

summary: we can map many
network monitoring questions
onto the inverse distribution.
Need new techniques to study it

�one

� two

�many
The title is a play on words

because when Jan's reflection
comes to life, Jan discovers
that two is one too many.

The One and Only
Many queries on the forward distribution can be answered

effectively by drawing a sample.

That is, draw an x so probability of picking x is f(x) / ∑y f(y)

Similarly, we want to draw a sample from the inverse
distribution in the centralized setting.

That is, draw (i,x) s.t. f(x)=i, i≠0 so probability of picking i is
f-1(i) / ∑j f-1(j) and probability of picking x is uniform.

Drawing from forward distribution is “easy”: just uniformly
decide to sample each new item (connection, call) seen

Drawing from inverse distribution is more difficult, since
probability of drawing (i,1) should be same as (j,1000)

Sampling Insight
Each distinct item x contributes to one pair (i,x)

Need to sample uniformly from these pairs.

Basic insight: sample uniformly from the items x and
count how many times x is seen to give (i,x) pair that
has correct i and is uniform.

How to pick x uniformly before seeing any x?

Use a randomly chosen hash function on each x to decide
whether to pick it (and reset count).

f(x
)

x

5
4
3
2
1 f -

1 (
x)

i1 2 3 4 5

3/7
2/7
1/7

Hashing Technique
Use hash function with exponentially decreasing distribution:

Let h be the hash function and r is an appropriate const < 1

Pr[h(x) = 0] = (1-r)

Pr[h(x) = 1] = r (1-r)

…

Pr[h(x) = l] = rl(1-r)

Track the following information as updates are seen:

� x: Item with largest hash value seen so far

� uniq: Is it the only distinct item seen with that hash value?

� count: Count of the item x

Easy to keep (x, uniq, count) up to date as new items arrive

Hashing analysis
Theorem: If uniq is true, then x is picked uniformly.

Probability of uniq being true is at least a constant.

(For right value of r, uniq is almost always true in practice)

Proof outline: Uniformity follows so long as hash function h is
at least pairwise independent.

Hard part is showing that uniq is true with constant prob.

� Let D is number of distinct items. Fix l so 1/r · Drl · 1/r2.

� In expectation, Drl items hash to level l or higher

� Variance is also bounded by Drl, and we ensure 1/r2 · 3/2.

� Analyzing, can show that there is constant probability that
there are either 1 or 2 items hashing to level l or higher.

Hashing analysis
If only one item at level l, then uniq is true

If two items at level l or higher, can go deeper
into the analysis and show that (assuming
there are two items) there is constant
probability that they are both at same level.

If not at same level, then uniq is true, and we
recover a uniform sample.

� Probability of failure is p = r(3+r)/(2(1+r)).

� Number of levels is O(log N / log 1/r)

� Need 1/r > 1 so this is bounded, and
1/r2 ¸ 3/2 for analysis to work

� End up choosing r = p(2/3), so p is < 1

Level l

Sample Size
This process either draws a single pair (i,x), or may not

return anything.

In order to get a larger sample with high probability, repeat
the same process in parallel over the input with different
hash functions h1 … hs to draw up to s samples (ij,xj)

Let ε = p(2 log (1/δ)/s). By Chernoff bounds, if we keep
S = (1+2ε) s/(1 – p) copies of the data structure, then we
recover at least s samples with probability at least 1-δ

Repetitions are a little slow — for better performance,
keeping the s items with the s smallest hash values is
almost uniform, and faster to maintain.

Using the Sample
A sample from the inverse distribution of size s can be used

for a variety of problems with guaranteed accuracy.

Evaluate the question of the sample and return the result.

Eg. Median number of calls made: find median from sample

Median is bigger than ½ and smaller than ½ the values.

Answer has some error: not ½, but (½ § ε)

Theorem If sample size s = O(1/ε2 log 1/δ) then answer
from the sample is between (½-ε) and (½+ε) with
probability at least 1-δ.

Proof follows from application of Hoeffding’s bound.

Outline
� inverse

�one
summary: can use hashing
approach to draw a uniform
sample from inverse
distribution. Using the sample
we can answer many questions.

� two

�many
The title is a play on words

because when Jan's reflection
comes to life, Jan discovers
that two is one too many.

The Power of Two

We often want to compare two massive streams and look at
their difference.

Examples: what’s the difference between yesterday and today;
what’s the difference between Router A and Router B etc.

Formally, we want to ask the same questions as before but on
the the difference distribution:

(f-g)(x) = f(x) – g(x)

How to handle the inverse of the difference distribution, (f-g)-1?

Extended Hashing Approach
Take the hashing approach, and combine two summaries to

get a summary of the difference.

Direct combination is not easy: what if the item at highest
level occurs same number of times in both summary?
Then it will cancel out. More generally, is result uniform?

Sample (i,x) uniformly from (f-g) so x is
chosen uniformly from x where (f-g)(x)≠0.

Idea: track info about all levels. Ensure
when combining two synopses result is
uniform over (f-g)-1

Ensure that combining info about f and g has
duplicate items exactly canceling out.

f – g = (f-g)

Details
For each level, keep sum of item identifiers that hash there

(sumx), and sum of their counts (count).

To combine f and g, compute sumxf – sumxg and
countf – countg for every level.

If they are same, they will cancel out (result is zero)

If one item is left over, we have its exact count, and can
recover its identity: (sumxf – sumxg)/(countf – countg)

(Σ ,4)-(Σ ,6)=(-Σ ,-2)

(-Σ)/-2 =

But we can get fooled:

How do we know that there is one item?
(equivalent to the uniq flag from the centralized case)

Solution: Use additional counters based on bit wise
representation of each item: keep c(b) = number of times
item with bit b=1 has been seen.

If c(b)f – c(b)g = {0,(countf – countg)} for all b, item is unique.

If item is not unique, then this test will fail for some b value.

Variation: updating all these c(b) counts could be slow (32 bit
IP address pairs?) so use speed-ups based on hashing.

Verification
(Σ)/2 = ?

2

2 2 2

2

1 2 1

11

0

000 0

0
uniq=true uniq=false

Result
Can draw a uniform sample from (f-g)-1 by keeping concise

synopses of f and g, and combining them by subtraction.

For each level, recover (x, count, uniq) as before:
x = (sumxf – sumxg)/(countf – countg)
count = (countf – countg)
uniq = Πb c(b)f – c(b)g 2 {0,(countf – countg)}

Correctness follows from the centralized case, by linearity:
it’s as if we are seeing pairs (i,x) (i≠0) arriving and
choosing whether to sample them based on h(x).

Probability of uniq being true is same as before.

Hence we draw (i,x) uniformly from (f-g)-1 so (f-g) (x) = i

Outline
� inverse

�one

� two
summary: computing difference
can be done with care. Using
linear composition of synopses
allows differences to precisely
cancel out.

�many
The title is a play on words

because when Jan's reflection
comes to life, Jan discovers
that two is one too many.

Many Rivers to Cross

Want to track the union of their
distributions:
(S1 [S2 [… [Sn) (x) = ∑j=1

n Sj(x)

And the global inverse distribution:
(S1 [S2 [… [Sn)-1

Most important resource in this
distributed model is communication.

Want to guarantee accurate solutions
while minimizing communication cost.

Network Operations
Center (NOC)

Concise
summaries

Merged
Summary

Approximate
Answer

Analysis
Query

Models many situations: large network monitoring, sensor
networks etc.

New Challenges
Monitoring is Continuous…

– Need real time tracking, not one-shot query/response

…Distributed…

– Many remote sites, connected over a network but with
communication constraints

…Streaming…

– Each site sees a high speed stream of data, and may be
resource (CPU/Memory) constrained.

…Holistic…

– Queries over whole distribution

Distributed Model

Streams at each site add to distributions Sj

(More generally, can have hierarchical structure)

Use summaries to communicate…
Much smaller cost than sending exact values

Prediction
predicted distribution
of items at site j Coordinator uses prediction

to answer queries

true distribution of
items at site j

Prediction error
tracked by site j

Guarantee:
queries are accurate if
prediction error is small

Remote sites monitor local stream, compare certain local
information to predicted values

Stability through prediction
If behavior is as predicted, no communication

Inverse Distribution Tracking
Try to run the same algorithm at the central site. Remote

sites send up new information when needed.

Allow some amount of “lag” when sending: instead of
ensuring that count is accurate, can tolerate error up to
(1+θ)count for some fixed θ.

Three basic approaches:

Local Count Only (LCO): sites send when
countj > (1+θ) oldcountj

Global Count Sharing (GCS): sites share count, send when
countj > oldcountj + θcount/n

Local Count Sharing (LCS): instead of broadcasting count,
sites receive new value of count when the update.

Experimental Study

� BIG savings over sending every update, ¿ 1% cost

� Local is better than global information: LCS and LCO
consistently beat GCS on different data sets.

� Accuracy improves with sample size, about 1% error on
querying f-1(1)

Outline
� inverse

�one

� two

�many
summary: distributed setting
gives new challenges to
minimize communication
overhead. Avoiding global
information helps.

The title is a play on words
because when Jan's reflection
comes to life, Jan discovers
that two is one too many.

Going forward… applications

Building “Bloodhound System”: distributed high speed
monitoring for network security applications.

Apply these and other high speed monitoring techniques
deep inside network to track anomalies and threats.

Goal is to be able to monitor approximately many
parameters when exact approaches break down.

Victim
Server

Attackers

Spoofed
IP sources

Traffic
Monitor

Flow update
streams

Going forward… research
Many more problems on high speed network data remain

unanswered.

Many problems on the inverse distribution still open.
Eg. Sample based approach typically gives additive error ε
with a sample of size 1/ε2 . Many problems on forward
distribution can be answered using space 1/ε or better.
Can the bounds be improved here?

Problems that are well understood in the “one” case are less
well understood in the “two” and “many” cases.

A solid theoretical basis (a new continuous communication
complexity) needed for lower bounds in the “many” model
we use here.

References
Summarizing and mining inverse distributions on data streams via

dynamic inverse sampling. In VLDB, 2005

What’s Different: Distributed Continuous Monitoring of Duplicate-
Resilient Aggregates on Data Streams, under submission, 2005.

What's new: Finding significant differences in network data
streams. Transactions on Networking, Feb 2006.

Sketching streams through the net: Distributed
approximate query tracking. In VLDB, 2005.

Space efficient mining of multigraph streams. In ACM
Principles of Database Systems, 2005.

Holistic aggregates in a networked world: Distributed
tracking of approximate quantiles. In ACM SIGMOD, 2005

TWO

MANY

TWO

MANY

ONE

MANY

Joint work with Minos Garofalakis, Rajeev Rastogi (Bell Labs)
S. Muthukrishnan, Wei Zhuang, Irina Rozenbaum (Rutgers)

