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Motivation

There are many efficient randomized streaming and distributed algorithms for problems such
as approximate matrix multiplication, low rank approximation, and regression.

We explore whether similar guarantees for these problems can be achieved using only deter-
ministic algorithms.

Prior deterministic algorithms focus only on the 2-norm [1].

We give the first efficient deterministic distributed and streaming algorithms for `p-regression
for any p ≥ 1, including p =∞.

We exploit the sketch-and-solve paradigm to prove approximation guarantees for problems
such as regression.

Our experimental results validate the approach and show that it can be beneficial in practice.

Obtaining a Summary in a Data Stream

We use a well-conditioned basis [2] (wcb) which has properties similar to an orthonormal
basis.

A matrix U is a wcb for the column space of A if ‖U‖p ≤ α and for all z, ‖z‖q ≤ β‖Uz‖q
where q is the dual norm to p, and α and β are at most poly(d) [2].

Let U = AR for change of basis matrix R. Then the full `p-leverage scores are wi =
‖(AR)i‖pp.
Our summary is obtained by reading blocks of the matrix, keeping rows of high leverage and
pruning out rows of low leverage.

Problem: How do `p-leverage scores change when they are computed on a block of the
input instead of the full input?

The hue of each row in Figures 1 and 2 indicates the leverage of that particular row (darker
is higher leverage).
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Figure 1: Global Leverage Scores

0 0 0 1

0.51 -0.26 0.68 0

-0.57 -0.9 -1.5 0

6.9 1 0.89 0

-4.1 -0.42 -1.9 0

-0.54 -0.76 0.22 0

First block

-0.48 -19 0.63 0

-0.3 0.92 -3.6 0

-2.3 -1.5 -0.46 0

0.095 -3.3 -0.64 0

0.6 1 -0.54 0

3.2 0.98 -1 0

Second Block

-0.17 0.58 -0.083 0

-10 0.83 13 0

0.86 0.33 -0.72 0

-0.26 -2.1 0.73 0

0.6 -20 -0.54 0

-0.65 -1.8 3.5 0

Third Block

Figure 2: Local Leverage Scores
We prove that rows with high global leverage scores have high local leverage scores up to
poly(d) factors, ŵi ≥ wi/poly(d).

The sum of the leverage scores is bounded by poly(d) so there cannot exist too many rows
of high leverage which ensures the summary does not grow too large.

`∞-Regression and Other Results

Problem: `∞-regression: Find ε‖b‖p additive error approximation to minx∈Rd ‖Ax− b‖∞.

Idea: Store all rows in A of high leverage and set all others to zero, call this A′. Keep b on
these indices, otherwise set to zero, call this b′.

Solve the `∞-regression on A′ and b′. This provides a good approximation (theoretically and
empirically) as we can prove low leverage rows which are dropped do not contribute much to
the `∞ cost.

High leverage rows are kept in their entirety so `∞ cost is same as in full problem.

Low leverage rows known not to contribute much to `∞ score so don’t lose much by setting
to zero.
Lower bound shows that relative error approximation cannot be obtained in sublinear space
via reduction to Indexing in communication complexity.

Other Results: We also give deterministic small-space streaming and distributed algorithms
for `p-subspace embeddings, `p-regression, `p-low-rank approximation, and approximate ma-
trix product.

Experimental Evaluations

Methods: We tested the `∞-regression algorithm on US Census and YearsPredictionsMSD
datasets by varying the space bound.

Compared `2 wcb (Orth), and `1 wcb (SPC3) [3] to baseline methods of no conditioning
(Identity), and uniform sampling (Uniform).

Performance is similar in both datasets and the results for the US census data are presented.
The census data has 5 million rows and 11 features.

Time Complexity: Figure 3 shows that there is only a small absolute time difference
between finding the two well-conditioned bases.

Figure 4 shows that this difference is almost negligible over the entire stream.

The time to stream the data, generate a summary, and solve the approximate reduced
problem is less than the time taken by the brute force solver.
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Figure 3: Time to compute WCB
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Figure 4: Total Time for WCB + Regression

Space Complexity: Figure 5 shows that both conditioning methods admit summaries
which are significantly sublinear in the input size.

The Identity method always outputs a small summary and Sample always generates a sum-
mary of size equal to the space constraint, however, both of these can be suboptimal.

Figure 4 shows that the Sample summary is larger so takes longer to query, and Figure 6
shows Identity has no consistent error behaviour.
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Figure 5: Space Complexity

100000 200000 300000 400000 500000
Space Constraint (Number of rows)

10−2

10−1

100

Er
ro

r: 
1−

̂ f/f
*

Orth
SPC3
Sample
Identity

Figure 6: Error as Space is increased

Accuracy: The `∞-regression can be modelled as a linear program. The sketched LP has
solution f̂ and the true LP has solution f ∗: we measure error as 1− f̂/f ∗.
Figure 6 shows that accurate summaries of the data which are a fraction of the total input
size can be found by using the conditioning methods.

Summary: Conditioning methods perform well across each of space, time, and accuracy
showing that they are a robust method for generating accurate and fast summaries!
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