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Introduction
Marginal statistics of multi-dimensional data
are the workhorse of data analysis.
Applications of marginals range from finding
correlations in the data to fitting sophisti-
cated prediction models.
We provide a set of algorithms for materi-
alizing marginal statistics under the strong
model of local differential privacy.
We prove theoretical bounds on the accuracy
of marginals, and perform empirical evalua-
tion for tasks such as modeling and correla-
tion testing.

Background
Local Differential Privacy (LDP) [4]
requires that the output of every user meets
the ε-differential privacy guarantee.
This is typically achieved by perturbing the
user’s output with some probability, e.g.
flipping a bit.
LDP for data analysis has been deployed at
large scale in systems from Google [5], Apple
[2] and Microsoft [3].

Figure 1: Untrusted Aggregation

Problem Statement
Suppose a research organization wants to
collect sensitive data from each user through
an online survey/smartphone app.
To ensure total privacy, the organization
won’t collect raw data, but will define a pro-
tocol for users to mask their own data.
Each user is asked to answer d sensitive
binary questions, e.g. gender, overweight,
smoker, high BP.
The aggregator’s goal is to find associ-
ations (a.k.a marginals) between arbitrary
subsets of k questions/attributes (out of the
total

(d
k

)
subsets).

Overweight/High BP Y N
Y 0.55 0.15
N 0.10 0.20

Figure 2: A 2-way marginal

Our Contributions
We develop 6 perturbation algorithms com-
bining views of the data (global/local
view) and basis transforms (identity and
Hadamard transform).
We show the mathematical relationship be-
tween various parameters (dimension d,
marginal size k, privacy parameter ε , popu-
lation size N) and the accuracy of aggrega-
tion. The error in aggregation is ∝ 1
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Algorithm Design
Our methods differ depending on how they
view the data:
• Input Based (Inp*). The aggrega-

tor gathers information from each user
to reconstruct the full distribution, then
projects down to the marginal of interest
at query time.

•Marginal Based (Marg*). Each user
evaluates a random marginal, and releases
(perturbed) data on it, so each marginal
is reconstructed independently.

Applying Data Transformations. Each
user’s input can be represented as a vertex
in a d-dimensional Hamming cube:

Figure 3: Hamming Cube

Inputs are sparse, so we consider transform-
ing the input to make it more dense.
We can apply the Hadamard Transform
(HT), a discrete Fourier transform for the
d-dimensional Hamming cube.
HT is linear, so Hadamard coefficients for
the whole population are formed as the sum
of coefficients from each individual.

Figure 4: Hadamard Transformation Matrix

Our best algorithm (InpHT) has each
user report one randomly sampled and per-
turbed Hadamard coefficient of their in-
put.
The aggregator builds an unbiased estimate
of the HT of the input, and uses this to re-
construct any required marginal.
Theorem [1]: Only C = ∑i≤k

(d
i

)
≤ dk

Hadamard coefficients are needed to eval-
uate any of the marginals involving ≤ k at-
tributes.

Evaluation
Data set. We take the 2013 NYC Taxi
Data set, and create 8 binary attributes:

Figure 5: Binary attributes of NYC taxi data

We apply our methods to statisti-
cal/machine learning tasks like χ2 test of
independence and Bayesian Modeling

(approximating a high dimensional marginal
using low dimensional ones).
Marginal reconstruction. We find that
the Hadamard-based method on the full
input (InpHT) gives the best accuracy
in reconstructing marginals. The second
best method materializes marginals directly
(MargPS).

Figure 6: Mean total variation between true
and reconstructed marginals as ε varies

χ2-test of independence using 2-way
marginals. We use the materialized
marginals to run a χ2 test for significance
of correlation. We observe that InpHT ob-
tains test values closer to the correct ones
than the alternative method MargPS.

Figure 7: χ2 test statistics for N = 256K
taxi trips with ε = 1.1

Concluding Remarks
We show that accurate marginal reconstruc-
tion is possible under the local model of dif-
ferential privacy. Open problems include:
•Extend to non-binary data. Encoding

categoric variables as binary is a first step.
•More complex data analytics. It is

open to more directly build rich models
accurately under LDP.
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