
Space Efficient Mining
of Multigraph Streams

Graham Cormode
cormode@bell-labs.com

S. Muthukrishnan
muthu@cs.rutgers.edu

Data Streams
Many large sources of data are generated as

streams of updates:

–IP Network traffic data

–Text: email/IM/SMS/weblogs

–Scientific/monitoring data

Must analyze this data which is high speed (tens of
thousands to millions of updates/second) and
massive (gigabytes to terabytes per day)

Answers can be approximate with guarantees

Database Work
Much work in databases on processing streams

Many emerging systems: Gigascope, STREAM,
Telegraph, Aurora, NiagaraCQ etc.

Much work on (approximate) query answering:
building primitives for different queries.

Most work so far has assumed simple model of
data: sets, vectors, flat files etc.

Often data has more complex structure eg graph

Graph Model

Want to focus on number of distinct communication
pairs, not size of communication

Consider network traffic data:
defines a communication graph

eg edge: (source, destination)

or edge: (source:port, dest:port)

Defines a (directed) multigraph

We are interested in the underlying
(support) graph on n nodes

Multigraph Problems
Let G[i,j] = 1 if (i,j) appears in stream:

edge from i to j. Total of m distinct edges

Let di = Σj=1
n G[i,j] : degree of node i

Find aggregates of di’s:

–Estimate heavy di’s (people who talk to many)

–Estimate frequency moments:
number of distinct di values, sum of squares

–Range sums of di’s (subnet traffic)

–Quantile queries over di’s (applications in sensors)

Can’t we just…
Can’t we just use standard stream techniques…

sketches, samples, etc.?

No – challenge is dealing with repetition of edges.

Want to ensure that, eg, sending a message to
1,000 others is much more visible than sending
1,000,000 messages to 1 other…

Existing techniques will only see the large volume,
not large number of distinct destinations…

Primitives
Use approximate distinct counters as black box.

Eg, Flajolet-Martin (FM) sketches, Gibbons’ distinct
sampling [Gib01].

Input: multiset of items

Output: F0 = number of distinct items to (1±ε)
factor with probability 1-δ.

Cost: Requires space O(1/ε2 log 1/δ)

(very small for moderate ε and tiny δ)

Can’t we just…
Can’t we just plug distinct counters into some

existing algorithms and run on multigraph
streams?

No – there’s no guarantee of correctness / space
bounds.

Need a more careful approach, and proof.

Will see several attempts to do this, which fail
both in theory and in practice

Heavy Hitters Distinct
Find i’s such that di > φ ∑i di

Finds the people that talk to many others

Indicates unusual net activity (port scans, worms)

Can try to take existing HH algs and put in
approximate counter data struture:

–Count Sketch [CCFC02]

–Count Min Sketch [CM04]

–Lossy Counting [MM02]

Can’t we just…
Can’t we just pick any of these?

No:

� Count sketch
Relies on adding and subtracting counts.
But subtracting two approximate counts doesn’t
give good estimate of the difference

� Lossy counting
Also need to subtract/compare and delete
Can’t show correctness/space bounds

Count-Min + Count-Distinct
Count-Min sketch only uses additions, so can apply:

Correctness / Accuracy
Focus on point query accuracy: estimate di.

Prove estimate has only small bias in expectation:

So probability that minimum of log n repetitions is
still bad is very small (< 1/n)

Result
Can estimate any di given i with error εm in space

O(ε-3 log2 n). Time per update is O(log2 n).

Use this to find heavy di’s: for each update (i,j),
test whether i is heavy.

Degree Estimation Accuracy, Space=175KB, Z=1.2

0.0%

0.5%

1.0%

1.5%

2.0%

0 2 4 6 8 10
Number of Distinct Edges / 10^6

O
bs

er
ve

d
Er

ro
r

Sketch

Lossy

Frequency Moment Estimation
Second frequency moment estimation (F2) is key

to many streaming algorithms.

Equivalent to self-join size over relations.

Define this as M2 = ∑i=1
n di

2

On graph, informs about neighborhood size:
di

2 is (roughly) node pairs having path through i

Can’t we just…
Can’t we just:

–Use AMS sketch, replacing counters with
approximate counters for +1s and –1s

No - making the estimate requires subtractions
Accuracy is not guaranteed
Works badly in practice too

–Pick some nodes by sampling from domain and
track info about these exactly

No - expectation correct, but variance too high.
Resulting estimate is way off.

Minwise hashing
Use a technique based on min-wise hashing

Allows us to sample almost uniformly from set of
edges

–For each edge in stream, compute h((i,j))

–Store info on v if h((v,j)) is smallest so far

–Collect every edge (v,j) matching v until more than
1/ε2, then switch to approx counting

–Estimate of M2 is m * (2d –1),
d = number of edges seen matching on v

Can’t we just…
Can’t we just use the approximate counting from

the get-go?

No – we need slightly more accuracy when the
number of edges is smaller.

Fortunately, we can keep small number of edges
exactly, switch over at threshold, and space
required is asymptotically the same.

Results
Expectation of estimate =

(1+ε)M2

Variance = (1+ε)n1/2M2
2

See paper for details

Repeat with different hash
functions enough times
to increase accuracy.

Space = O(ε-4 n1/2 log n)

Small space sufficient in
practice.

Experimental Study

F2 Estimation Accuracy, Space=130KB

0%

20%

40%

60%

80%

100%

0.0 0.5 1.0 1.5 2.0 2.5

Zipf Parameter

O
bs

er
ve

d
Er

ro
r

Sketch

Min Hash

Approx Min Hash

F2 Estimation Accuracy on Phone call data

0%
20%
40%
60%
80%

100%
120%
140%

0 100 200 300 400 500

Space / KB

O
bs

er
ve

d
Er

ro
r Sketch

Min Hash

Importance of using provable methods is shown.

Plausible heuristics often get terrible accuracy

Extensions
� We applied similar techniques to other problems:

range queries, quantile queries (details in paper)

� “Duplicate insensitivity” also important in, eg
sensor networks where results are broadcast
(see tech report by Kollios et al)

� Problems such as (F2 (F0)): cascaded aggregates
Other cascaded aggregates are interesting, eg
F2(F2), Median(F2) etc… arbitrary aggregates

� Some results extend to sliding window and
arbitrary deletions case, M2 still open

Conclusions
� Now we have results for many basic aggregates

in data streams, applications such as graph
streams require “cascaded aggregates”

� Naively combining results doesn’t just work: they
fail both in theory and in practice

� Careful combinations and proofs needed to get
accurate solutions.

