Approximation Algorithms for Clustering Uncertain Data

Graham Cormode

AT&T Labs - Research graham@research.att.com

Andrew McGregor

UCSD / MSR / UMass Amherst

andrewm@ucsd.edu

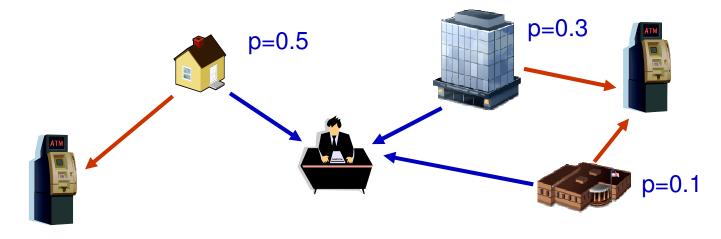
Introduction

Many applications generate data which is uncertain:

- Quality of Record Linkages
- Confidences of extracted rules
- Noisy Sensor/RFID readings
- Leads us to study probabilistic data management
- Much recent study on uncertain data in the DBMS
 - Answering SQL style queries with probabilities
- Less work on *mining* uncertain data equally important

Clustering Uncertain Data

- We study the core mining problem of clustering
 - Given knowledge about the *distribution* of each data point, how to locate cluster centers that optimize expected cost?
- Example: bank wants to place new locations
 - Each customer has a distribution (e.g. home, work, school)
 - Place "home branch" for each customer to minimize dist
 - Place ATMs so expected distance to any is minimized



Approximation Algorithms for Clustering Uncertain Data - Cormode, McGregor

Related Work

Distinct from "soft clustering"

- Soft clustering: hard location of points need soft assignment
- Here: soft location of points, desired hard assignment
- Initial heuristics proposed for clustering uncertain data
 - Typically, treat probabilities as weights, or use traditional clustering on expected distances
 - No approximation guarantees known no attempt to define optimization criteria

Preliminaries

Models of data:

- Point probability: each point either appears with probability p_i at x_i, or else does not appear
- 2. Discrete PDF: specifies $Pr[X_i = x_i]$ for a set of locations $\{x_i\}$
- 3. Continuous PDF: e.g. Gaussian defined by mean and variances describes possible location
- Models of clustering:
 - Unassigned: wherever a point appears, it is associated with its closest cluster center
 - Assigned: wherever point X_i appears, it is assigned to center σ(i). Algorithm must specify σ()

Cost Metrics

- We generalize well-known metrics from the deterministic case:
 - k-median: expected sum of distances from points to centers
 - k-means: expected sum of squared distances
 - k-center: expected max distance of a point to a center
- Expectations are taken over all possible worlds
- Given a particular set of centers and points, the cost is well-defined, hence we can try to optimize.

Our Results

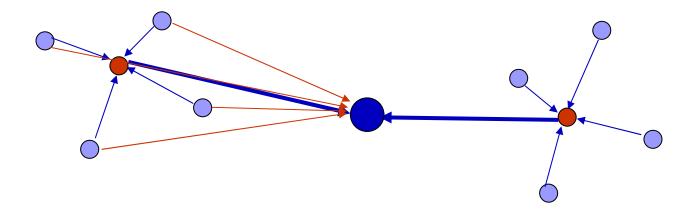
Objective	Metric	Assignment	α	eta
k-center (point probability)	Any metric	Unassigned	$1 + \epsilon$	$O(\epsilon^{-1}\log^2 n)$
	Any metric	Unassigned	$12 + \epsilon$	2
k-center (discrete pdf)	Any metric	Unassigned	$1.582 + \epsilon$	$O(\epsilon^{-1}\log^2 n)$
	Any metric	Unassigned	$18.99 + \epsilon$	2
k-means	Euclidean	Unassigned	$1 + \epsilon$	1
	Euclidean	Assigned	$1 + \epsilon$	1
k-median	Any metric	Unassigned	$3 + \epsilon$	1
	Euclidean	Unassigned	$1 + \epsilon$	1
	Any metric	Assigned	$7 + \epsilon$	1
	Euclidean	Assigned	$3 + \epsilon$	1

 (α,β) approximations output (βk) centers to give αapproximation of best k-center clustering

k-means and k-median

- Due to linearity, unassigned versions of k-means and kmedian are quite simple:
 - By linearity of expectation, the cost is equivalent to deterministic clustering with probabilities as weights
- Assigned version is more complex, since expected distance depends which center we assign it to
- Basic idea: cluster each PDF to find best 1-cluster, then cluster these clusters

Assigned k-means

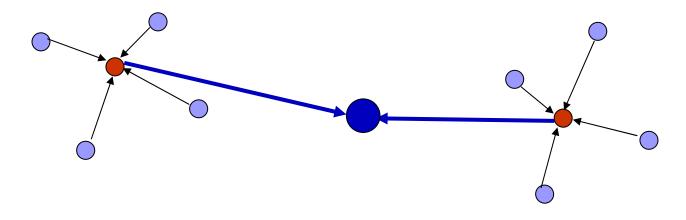


Can show that cost of assigning a point to some center is equal to cost assigning weighted centroid of PDF to that center, plus "variance" of the PDF

- Good homework problem (Pythagoras on each dimension)

- Since variance is positive, α-approximation of clustering centroids yields α-approximation for original problem
 - Plug in $(1+\epsilon)$ approximation for k-means in Euclidean space

Assigned k-median



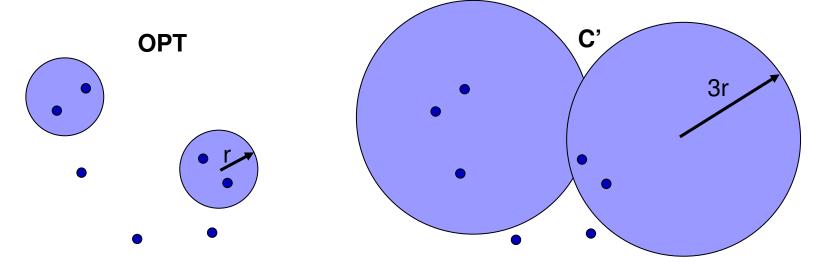
- Clustering the 1-medians is no longer approximation preserving
- Some algebra shows that given an α -approximation for weighted k-median, we obtain a (2α +1) approximation
 - Plug in (1+ε) approx in Euclidean space or (3+ε) in arbitrary metric space
 - Similar techniques used in clustering streams of points

k-center

- k-center is more challenging, since cost function has 'min' inside the expectation
- Can be counterintuitive:
 - If all probabilities are close to 1, it behaves like traditional k-center
 - If all probabilities are very small, it behaves like k-median
 - An α -approximate clustering for half the points and an α -approx for the other half does not yield an α -approx for all
- Discuss only the point probability case here
 - Unassigned PDF case can be reduced to point probability up to an (e/(e-1)) = 1.582 factor in cost

Constant Factor Approximation

- Use a result of Charikar et al. [SODA 2001] in the deterministic case to show for the probabilistic data:
 - Given radius r, can find a clustering C' so that $Pr[cost(C') \ge 3r] < Pr[cost(OPT) \ge r]$
 - Bounds the tail of the distribution of the cost function



Approximation Algorithms for Clustering Uncertain Data - Cormode, McGregor

Choosing a Radius

- Let $r_0 \le r_1 \le ... \le r_t$ be the $O(n^2)$ distances in the input
- For each r_i find clustering C_i satisfying previous claim
- Pick the largest radius r_l satisfying $Pr[cost(C_l) \ge r_l] < \frac{1}{2}$
- Split the input into "near points" with d(x,C_I) ≤ r_I and "far points" with d(x,C_I) > r_I
 - In point probability case, each input point has only one possible location

Clustering the Near Points

- Use property of the clustering C_I to show optimal cost of clustering on the near points is at least 1/6 cost(C_I)
 - Write cost in terms of each "shell" of $(r_i r_{i-1})$
 - Cost of optimal on each shell is at least 1/3 that of C_j for that shell by construction of C_i
 - By choice of C_I and defn. of 'near', replacing C_j with C_I for each shell only affects shell cost by factor 2
 - This shows $cost(C_1)$ on the near points is a 6-approximation

$$Cost = \sum_{j} Pr[cost(C) > r_{j}](r_{j} - r_{j-1})$$

"Discrete integration"

Clustering the Far Points

- The probability of seeing a point that fall more than C_l is chosen to be "small" (≤ 1/2), so the probability of these points must each be small
 - In particular for the far points, $\prod (1-p_i) \ge \frac{1}{2}$
 - k-center cost can be written in terms of probability that no further points are present, as ∑_i p_i d(x_i, C) ∏_{i<i} (1-p_i)
 - So cost is at least $\frac{1}{2}\sum_{i} p_{i} d(x_{i}, C)$ the k-median cost
- Let C* be a (3+ɛ) approximation to the optimal k-median of the far points
- C* is a (6+ε) approximation to the optimal k-center for the far points.

Combining Clusterings

- Combine C* and C₁ to get 2k centers
- Cost of all points and (C* ∪ C_I) is at most cost(C*) on far points and cost(C_I) on the near points
- Optimal cost of a subset of points is at least as big as optimal on whole set
- Thus C^{*} ∪ C_I is at worst (6 + 6 + ε) = 12+ε approximation to the best k-center clustering

1+ε Factor Clustering

- We can get a much better clustering, at the expense of many more cluster centers
- Define a weight for each probability as $w_i = -\ln(1-p_i)$
- Reduce to a covering problem
 - Given radius r, define F as points further than r from C
 - $\Pr[\text{cost} > r] = 1 \prod_{i \in F} (1-p_i) = 1 \exp(-\sum_{i \in F} w_i)$
- Can cover at least as much "weight" as optimal algorithm by greedily picking points as centers to cover most weight
 - Picking k $\ln(w/w_{min}) = O(k \ln n)$ points cover as much as opt
 - Proof by weighted version of greedy set cover

1+E Factor Clustering

- Round all distances between points to powers of $(1+\epsilon)$
- Find a covering for each $r \in \{1, 1+\epsilon, (1+\epsilon)^2...\}$
- Take the union of all centers found
- We have only given up a factor of $(1+\varepsilon)$ in the objective
- Result: We find O(k/ε log n log Δ) centers which (1+ε) approximates the optimal k-center cost
 - Δ is ratio between closest and furthest point

Conclusions

- Can give guaranteed approximation algorithms for clustering uncertain data
 - Natural questions: can we improve approximations?
 - Assigned k-center still to be understood
- Other mining / optimization problems on uncertain data have not been much studied
 - Facility location and other generalizations of clustering
 - Other mining tasks: association rules, classification
 - Summarization e.g. wavelets and histograms