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Introduction

� Many applications generate data which is uncertain:

– Quality of Record Linkages

– Confidences of extracted rules

– Noisy Sensor/RFID readings 

� Leads us to study probabilistic data management

� Much recent study on uncertain data in the DBMS

– Answering SQL style queries with probabilities

� Less work on mining uncertain data — equally important
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Clustering Uncertain Data

� We study the core mining problem of clustering

– Given knowledge about the distribution of each data point, 

how to locate cluster centers that optimize expected cost?

� Example: bank wants to place new locations

– Each customer has a distribution (e.g. home, work, school)

– Place “home branch” for each customer to minimize dist

– Place ATMs so expected distance to any is minimized

p=0.5
p=0.3

p=0.1
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Related Work

� Distinct from “soft clustering”

– Soft clustering: hard location of points need soft assignment

– Here: soft location of points, desired hard assignment

� Initial heuristics proposed for clustering uncertain data

– Typically, treat probabilities as weights, or use traditional 

clustering on expected distances

– No approximation guarantees known – no attempt to define 

optimization criteria
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Preliminaries

� Models of data:

1. Point probability: each point either appears with probability 

pi at xi, or else does not appear

2. Discrete PDF: specifies Pr[Xi = xi] for a set of locations {xi}

3. Continuous PDF: e.g. Gaussian defined by mean and 

variances describes possible location

� Models of clustering:

– Unassigned: wherever a point appears, it is associated with 

its closest cluster center

– Assigned: wherever point Xi appears, it is assigned to 

center σ(i).  Algorithm must specify σ()
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Cost Metrics

� We generalize well-known metrics from the deterministic 
case:

– k-median: expected sum of distances from points to 

centers

– k-means: expected sum of squared distances

– k-center: expected max distance of a point to a center

� Expectations are taken over all possible worlds 

� Given a particular set of centers and points, the cost is 

well-defined, hence we can try to optimize. 
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Our Results

� (α,β) approximations output (βk) centers to give α-
approximation of best k-center clustering
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k-means and k-median

� Due to linearity, unassigned versions of k-means and k-
median are quite simple:

– By linearity of expectation, the cost is equivalent to 

deterministic clustering with probabilities as weights

� Assigned version is more complex, since expected 

distance depends which center we assign it to

� Basic idea: cluster each PDF to find best 1-cluster, then 

cluster these clusters
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Assigned k-means

� Can show that cost of assigning a point to some center is 

equal to cost assigning weighted centroid of PDF to that 
center, plus “variance” of the PDF

– Good homework problem (Pythagoras on each dimension)

� Since variance is positive, α-approximation of clustering 

centroids yields α-approximation for original problem

– Plug in (1+ε) approximation for k-means in Euclidean space
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Assigned k-median

� Clustering the 1-medians is no longer approximation 

preserving

� Some algebra shows that given an α-approximation for 

weighted k-median, we obtain a (2α +1) approximation 

– Plug in (1+ε) approx in Euclidean space or (3+ε) in 
arbitrary metric space

– Similar techniques used in clustering streams of points
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k-center

� k-center is more challenging, since cost function has 
‘min’ inside the expectation

� Can be counterintuitive:

– If all probabilities are close to 1, it behaves like traditional

k-center

– If all probabilities are very small, it behaves like k-median

– An α-approximate clustering for half the points and an α-

approx for the other half does not yield an α-approx for all 

� Discuss only the point probability case here

– Unassigned PDF case can be reduced to point probability 

up to an (e/(e-1)) = 1.582 factor in cost
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Constant Factor Approximation

� Use a result of Charikar et al. [SODA 2001] in the 
deterministic case to show for the probabilistic data:

– Given radius r, can find a clustering C’ so that 

Pr[ cost(C’) ≥ 3r ] < Pr[ cost(OPT) ≥ r]

– Bounds the tail of the distribution of the cost function

OPT C’

3r

r
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Choosing a Radius

� Let r0 ≤ r1 ≤ … ≤ rt be the O(n2) distances in the input

� For each rj find clustering Cj satisfying previous claim

� Pick the largest radius rl satisfying

Pr[ cost(Cl) ≥ rl] < ½

� Split the input into “near points” with d(x,Cl) ≤ rl and “far 
points” with d(x,Cl) > rl

– In point probability case, each input point has only one 
possible location
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Clustering the Near Points

� Use property of the clustering Cl to show optimal cost of 
clustering on the near points is at least 1/6 cost(Cl)

– Write cost in terms of each “shell” of (rj – rj-1)

– Cost of optimal on each shell is at least 1/3 that of Cj for that 

shell by construction of Cj

– By choice of Cl and defn. of ‘near’, replacing Cj with Cl for 

each shell only affects shell cost by factor 2

– This shows cost(Cl) on the near points is a 6-approximation

Cost = ∑j Pr[cost(C) > rj](rj – rj-1)

“Discrete integration”
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Clustering the Far Points

� The probability of seeing a point that fall more than Cl is 

chosen to be “small” ( ≤ 1/2), so the probability of these 
points must each be small

– In particular for the far points, ∏ (1-pi) ≥ ½

– k-center cost can be written in terms of probability that no 

further points are present, as ∑i pi d(xi, C) ∏j<i (1-pj)

– So cost is at least ½ ∑i pi d(xi, C) — the k-median cost

� Let C* be a (3+ε) approximation to the optimal k-median
of the far points

� C* is a (6+ε) approximation to the optimal k-center for 
the far points.
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Combining Clusterings

� Combine C* and Cl to get 2k centers

� Cost of all points and (C* ∪ Cl) is at most cost(C*) on far 
points and cost(Cl) on the near points

� Optimal cost of a subset of points is at least as big as 

optimal on whole set

� Thus C* ∪ Cl is at worst (6 + 6 + ε) = 12+ε approximation 
to the best k-center clustering
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1+ε Factor Clustering

� We can get a much better clustering, at the expense of 
many more cluster centers

� Define a weight for each probability as wi = -ln(1-pi)

� Reduce to a covering problem

– Given radius r, define F as points further than r from C

– Pr[ cost > r ] = 1 - ∏i ∈ F (1-pi) = 1 – exp(-∑i ∈ F wi)

� Can cover at least as much “weight” as optimal algorithm 

by greedily picking points as centers to cover most weight

– Picking k ln(w/wmin) = O(k ln n) points cover as much as opt

– Proof by weighted version of greedy set cover



Approximation Algorithms for Clustering Uncertain Data - Cormode, McGregor18

1+ε Factor Clustering

� Round all distances between points to powers of (1+ε)

� Find a covering for each r ∈ {1, 1+ε, (1+ε)2…}

� Take the union of all centers found

� We have only given up a factor of (1+ε) in the objective

� Result: We find O(k/ε log n log ∆) centers which (1+ε)
approximates the optimal k-center cost

– ∆ is ratio between closest and furthest point
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Conclusions

� Can give guaranteed approximation algorithms for 
clustering uncertain data

– Natural questions: can we improve approximations?  

– Assigned k-center still to be understood

� Other mining / optimization problems on uncertain data 

have not been much studied

– Facility location and other generalizations of clustering

– Other mining tasks: association rules, classification

– Summarization – e.g. wavelets and histograms


