Histograms and Wavelets on Probabilistic Data

Graham Cormode AT&T Labs-Research

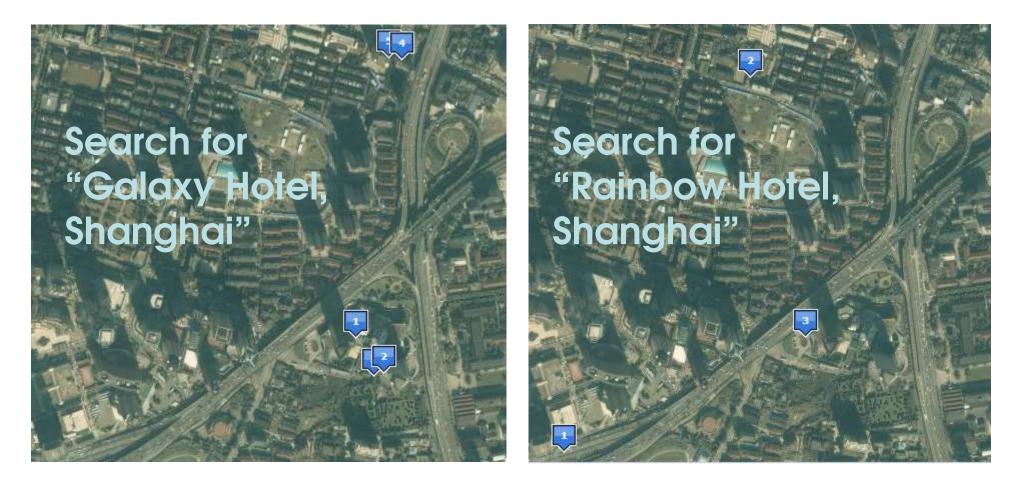
Minos Garofalakis

Technical University of Crete

Sources of Probabilistic Data

Increasingly data is uncertain and imprecise

- Data collected from sensors has errors and imprecisions
- Record linkage has confidence of matches
- Learning yields probabilistic rules
- Recent efforts to build uncertainty into the DBMS
 - Mystiq, Trio and MayBMS projects
 - Model uncertainty and correlations within tuples
 - Aim to allow general purpose queries over uncertain data



Query: How close is Galaxy Hotel to Rainbow Hotel?

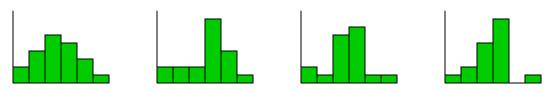
Probabilistic Data Reduction

Probabilistic data can be difficult to work with

- Even simple queries can be #P complete [Dalvi, Suciu '04]
- Want to avoid materializing all possible worlds
- Seek compact representations of probabilistic data
 - Data synopses which capture key properties
 - Can perform expensive operations on compact summaries
 - Histograms and wavelets used in traditional systems
- Challenge: how to build optimal synopses?

Models of Data

- Model defines a distribution over possible worlds, W
- Limit correlations to keep models compact
- Value pdf model:
 - Each item has independent distribution of frequencies



- Tuple pdf model:
 - Each tuple has a distribution of possible values
 - Can interpret as non-independent Value pdf model

Histograms for Probabilistic Data

A histogram partitions a domain into buckets

- All values within a bucket behave similarly
- Can be represented by a single value
- Apply same idea to probabilistic data
 - Partition domain to minimize *expected* error
 - Key problem is finding cost of a given bucket
 - Use dynamic programming to find overall cost

Sum Squared Error Histograms

Given a bucket b=(s,e), choose representative value r

- Pick c to minimize expected squared error
- Frequency of item i in world W is g_i(W)
- (Expected) cost = $\sum_{i=s}^{e} \sum_{worlds W} Pr[W] \cdot (g_i(W) r)^2$
- Cost minimized by r = mean value in the bucket
 - Mean given by $r = \sum_{i=s}^{e} \sum_{worlds W} Pr[W] \cdot g_i(W)$
 - Generalizes the deterministic case
 - Cost of a bucket is sum of expected sum of squares, less scaled expected square of sums
- How to compute the cost efficiently on demand?

Sum Squared Error Histograms

- Use the fact that E[X²] = Var[X] + E[X]² to simplify
 - Apply independence and summation of variance
 - Rewrite cost of a bucket in terms of sums of values per item
 - Keep prefix sums of these values to find sum of any range
- With precomputation, find bucket cost in O(1) time
 - Find optimal B-bucket histogram in time O(Bn²) via DP
- Holds for both tuple and value pdf models
 - Linearity of expectation handles dependencies for tuple pdf

Sum Squared Relative Error

• Cost of bucket is $E_W[\sum_{i=s}^{e} (g_i(W) - r)^2 / max(c^2, g_i^2(W))]$

For representative value r, and constant c

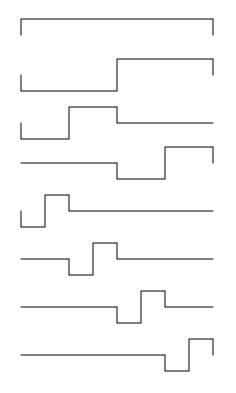
- Expand out the quadratic numerator
 - Observe that denominator is fixed in any world W
 - Differentiate to find optimal value of r
- Gives bucket cost in terms of three expectations:
 - $\sum_{i} 1/max(c^2, g_i^2)$; $\sum_{i} g_i/max(c^2, g_i^2)$ and $\sum_{i} g_i^2/max(c^2, g_i^2)$
 - Use prefix sums to find bucket cost in constant time
- Find optimal B-bucket SSRE histogram in time O(Bn²)

Sum of Absolute Error

- Cost of bucket is $E_W[\sum_{i=s}^{e} | g_i(W) r |]$
 - Break into sum of values above r, and those below
 - Minimize when r is some value with non-zero probability
 - As r varies, cost decreases to a minimum, then increases
- Can precompute prefix sums for different r values
 - Ternary search to find best choice of r for a bucket
 - Takes O(log |V|) steps over |V| different values
- Find opt B-bucket SAE histogram in O(n²(B+log |V|))

Wavelets for Probabilistic Data

- Express data via B Haar basis functions
 - Seek to minimize expected squared error
- Use linearity of wavelet transform
 - Optimal to take expected coefficient values
 - Error due to dropping i'th coefficient
 = square of expected value
 - Best to pick B largest expected coefficients
- More complex under other error metrics
 - Perform DP over tree structure and coefficient values

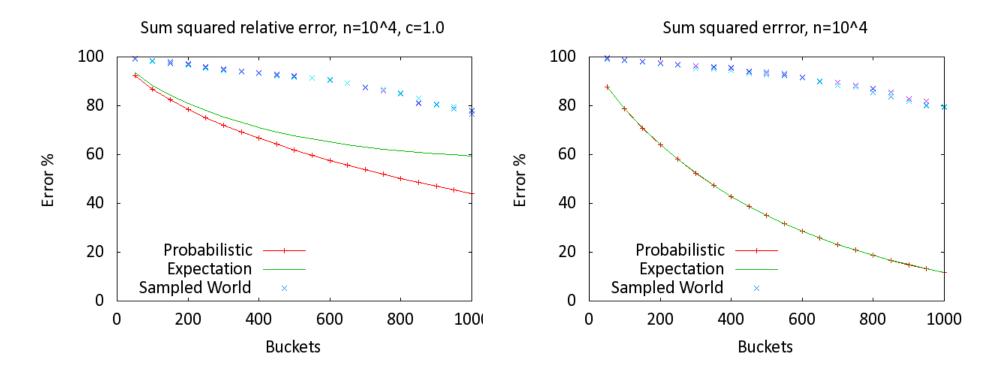


Experimental Study

Evaluated on two probabilistic data sets

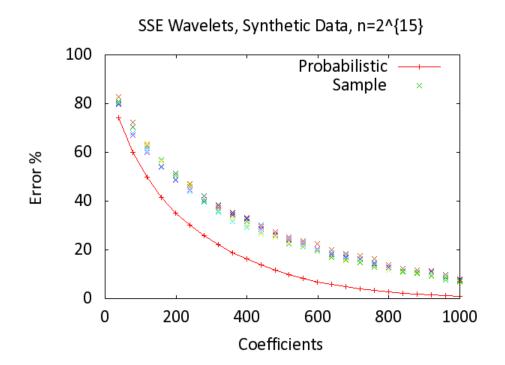
- Real data from Mystiq Project (10K items)
- Synthetic data from MayBMS generator (30K items)
- Compare to naïve methods to generate summaries:
 - Build wavelets/histograms over sampled possible world
 - Build wavelets/histograms over expected values
- Plot fraction of cost of 1 bucket cost of n buckets

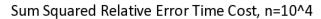
Sum Squared Error Histograms

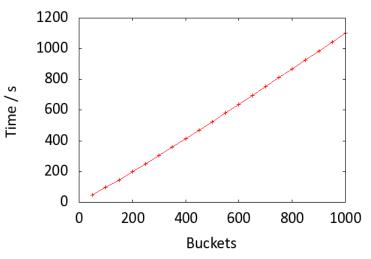


- Clear benefit for relative error over naïve methods
- Histograms on expected values almost as good for SSE

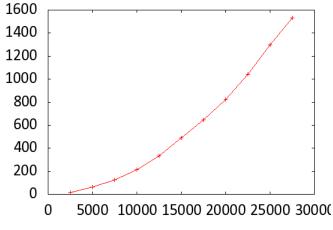
Time and Wavelets







Sum Squared Relative Error Time Cost, B=200



- Time cost is linear in **B**, quadratic in **n**
 - Same cost for histogram of sample $\int_{\underline{\underline{B}}}$
- Expected coefficients shows clear benefit over sampling possible worlds

Concluding Remarks

Can build synopses for probabilistic data

Advantages:

- Histograms and wavelets are familiar objects
- Leverage existing methods for processing summaries

Disadvantages:

- Dynamic programming can be slow (quadratic cost)
 - Can approximate using standard techniques
- Representation loses probabilistic semantics
 - Look for summaries that are more like pdfs?