Data Summarization

Distributed Computation

Graham Cormode

University of Warwick G.Cormode@Warwick.ac.uk

Agenda for the talk

My (patchy) history with PODC:

2011

2007

■ [c60] 🖹 显 😤 📽 Graham Cormode, Ke Yi: Tracking distributed aggregates over time-based sliding windows. PODC 2011: 213-214 ■ [c31] 🖹 显 😤 📽 Graham Cormode, Srikanta Tirthapura, Bojian Xu:

Time-decaying sketches for sensor data aggregation. PODC 2007: 215-224

This talk: recent examples of distributed summaries

- Learning graphical models from distributed streams
- Deterministic distributed summaries for high-dimensional regression _

Computational scalability and "big" data

- Industrial distributed computing means scale up the computation
- Many great technical ideas:
 - Use many cheap commodity devices
 - Accept and tolerate failure
 - Move code to data, not vice-versa
 - MapReduce: BSP for programmers
 - Break problem into many small pieces
 - Add layers of abstraction to build massive DBMSs and warehouses
 - Decide which constraints to drop: noSQL, BASE systems
- Scaling up comes with its disadvantages:
 - Expensive (hardware, equipment, energy), still not always fast
- This talk is not about this approach!

Downsizing data

- A second approach to computational scalability: scale down the data!
 - A compact representation of a large data set
 - Capable of being analyzed on a single machine

- What we finally want is small: human readable analysis / decisions
- Necessarily gives up some accuracy: approximate answers
- Often randomized (small constant probability of error)
- Much relevant work: samples, histograms, wavelet transforms
- Complementary to the first approach: not a case of either-or
- Some drawbacks:
 - Not a general purpose approach: need to fit the problem
 - Some computations don't allow any useful summary

1. Distributed Streaming Machine Learning

- Data continuously generated across distributed sites
- Maintain a model of data that enables predictions
- Communication-efficient algorithms are needed!

Continuous Distributed Model

- Site-site communication only changes things by factor 2
- **Goal**: Coordinator *continuously tracks* (global) function of streams
 - Achieve communication $poly(k, 1/\epsilon, log n)$
 - Also bound space used by each site, time to process each update

Challenges

- Monitoring is Continuous...
 - Real-time tracking, rather than one-shot query/response
- ...Distributed...
 - Each remote site only observes part of the global stream(s)
 - Communication constraints: must minimize monitoring burden
- ...Streaming...
 - Each site sees a high-speed local data stream and can be resource (CPU/memory) constrained
- ...Holistic...
 - Challenge is to monitor the complete global data distribution
 - Simple aggregates (e.g., aggregate traffic) are easier

Graphical Model: Bayesian Network

- Succinct representation of a joint distribution of random variables
- Represented as a Directed Acyclic Graph
 - Node = a random variable
 - Directed edge = conditional dependency
- Node independent of its nondescendants given its parents e.g. (WetGrass IL Cloudy) | (Sprinkler, Rain)
- Widely-used model in Machine Learning for Fault diagnosis, Cybersecurity

https://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

Conditional Probability Distribution (CPD)

Parameters of the Bayesian network can be viewed as a set of tables, one table per variable

Goal: Learn Bayesian Network Parameters

Distributed Bayesian Network Learning

Parameters changing with new stream instance

Naïve Solution: Exact Counting (Exact MLE)

- Each arriving event at a site sends a message to a coordinator
 - Updates counters corresponding to all the value combinations from the event
- Total communication is proportional to the number of events
 - Can we reduce this?
- Observation: we can tolerate some error in counts
 - Small changes in large enough counts won't affect probabilities
 - Some error already from variation in what order events happen
- Replace exact counters with approximate counters
 - A foundational distributed question: how to count approximately?

Distributed Approximate Counting

[Huang, Yi, Zhang PODS'12]

- We have k sites, each site runs the same algorithm:
 - For each increment of a site's counter:
 - Report the new count n'_i with probability p
 - Estimate n_i as $n'_i 1 + 1/p$ if $n'_i > 0$, else estimate as 0
- Estimator is unbiased, and has variance less than 1/p²
- Global count n estimated by sum of the estimates n_i
- How to set p to give an overall guarantee of accuracy?
 - Ideally, set p to $\sqrt{k \log 1/\delta} = 1 \delta$
 - Work with a coarse approximation of n up to a factor of 2
- Start with p=1 but decrease it when needed
 - Coordinator broadcasts to halve p when estimate of n doubles
 - Communication cost is proportional to $O(k \log(n) + \sqrt{k}/\epsilon)$

Challenge in Using Approximate Counters

How to set the approximation parameters for learning Bayes nets?

1. **Requirement:** maintain an accurate model (i.e. give accurate estimates of probabilities)

$$e^{-\epsilon} \leq \frac{\tilde{P}(\boldsymbol{x})}{\hat{P}(\boldsymbol{x})} \leq e^{\epsilon}$$

where:

 ϵ is the global error budget,

x is the given any instance vector,

- $\tilde{P}(\boldsymbol{x})$ is the joint probability using approximate algorithm,
- $\hat{P}(\boldsymbol{x})$ is the joint probability using exact counting (MLE)
- 2. Objective: minimize the communication cost of model maintenance We have freedom to find different schemes to meet these requirements

ϵ –Approximation to the MLE

Expressing joint probability in terms of the counters:

$$\widehat{P}(\mathbf{x}) = \prod_{i=1}^{n} \frac{C(X_i, par(X_i))}{C(par(X_i))} \qquad \widetilde{P}(\mathbf{x}) = \prod_{i=1}^{n} \frac{A(X_i, par(X_i))}{A(par(X_i))}$$

where:

- A is the approximate counter
- C is the exact counter
- $par(X_i)$ are the parents of variable X_i
- Define local approximation factors as:
 - α_i : approximation error of counter $A(X_i, par(X_i))$
 - β_i : approximation error of parent counter $A(par(X_i))$
- To achieve an ϵ -approximation to the MLE we need:

 $e^{-\epsilon} \leq \prod_{i=1}^{n} ((1 \pm \alpha_i) \cdot (1 \pm \beta_i)) \leq e^{\epsilon}$

Algorithm choices

We proposed three algorithms [C, Tirthapura, Yu ICDE 2018]:

- Baseline algorithm: divide error budgets uniformly across all counters, α_i, β_i ∝ ε/n
- Uniform algorithm: analyze total error of estimate via variance, rather than separately, so α_i , $\beta_i \propto \epsilon/\sqrt{n}$
- Non-uniform algorithm: calibrate error based on cardinality of attributes (J_i) and parents (K_i), by applying optimization problem

Algorithms Result Summary

Algorithm	Approx. Factor of Counters	Communication Cost (messages)
Exact MLE	None (exact counting)	O(mn)
Baseline	$O(\epsilon/n)$	$O(n^2 \cdot \log m / \epsilon)$
Uniform	$O(\epsilon/\sqrt{n})$	$O\left(n^{1.5} \cdot \log m /\epsilon\right)$
Non-uniform	$O\left(\epsilon \cdot \frac{J_i^{1/3} K_i^{1/3}}{\alpha}\right), O\left(\epsilon \cdot \frac{K_i^{1/3}}{\beta}\right)$	at most Uniform

 ϵ : error budget, n: number of variables, m: total number of observations J_i : cardinality of variable X_i , K_i : cardinality of X_i 's parents α is a polynomial function of J_i and K_i , β is a polynomial function of K_i

Empirical Accuracy

Communication Cost (training time)

training time vs. number of sites (500K training instances, error budget: 0.1) time cost (communication bound) on AWS cluster

Conclusions

- Communication-Efficient Algorithms to maintaining a provably good approximation for a Bayesian Network
- Non-Uniform approach is the best, and adapts to the structure of the Bayesian network
- Experiments show reduced communication and similar prediction errors as the exact model
- Algorithms can be extended to perform classification and other ML tasks

2. Distributed Data Summarization

A very simple distributed model: each participant sends summary of their input **once** to aggregator

• Can extend to hierarchies

Distributed Linear Algebra

- Linear algebra computations are key to much of machine learning
- We seek efficient scalable linear algebra approximate solutions
- We find deterministic distributed algorithms for L_p-regression [C Dickens Woodruff ICML 2018]

Ordinary Least Squares Regression

- **Regression**: Input is $A \in \mathbb{R}^{n \times d}$ and target vector $b \in \mathbb{R}^{n}$
 - OLS formulation: find $x = \operatorname{argmin} ||Ax b||_2$
 - Takes time $O(nd^2)$ centralized to solve via normal equations
- Can be approximated via reducing dependency on n by compressing into columns of length roughly d/ϵ^2 (JLT)
 - Can be performed distributed with some restrictions
- L_2 (Euclidean) space is well understood, what about other L_p ?

Main Tool for L_p: Well Conditioned Basis

- A well-conditioned basis is akin to an 'L_p orthonormal basis'
- U is an (α, β, p) web for the col(A) if in *entrywise* p-norm:
 - $\|U\|_p \le \alpha$
 - $||z||_q \le \beta ||Uz||_p$ when q = 1/(1+p) (dual norm)
 - Can find α , β at most a small $poly(d) \approx d^{\frac{1}{p} \pm \frac{1}{2}}$
- U can be found in $O(nd^2 + nd^5 \log n)$

Leverage scores

L₂ leverage scores defined via row norms of orthonormal basis

- Measure distance from the mean of the points
- In [0,1] and measure contribution to direction
- More unique points have higher leverage
- Approximate the shape of the data

 L_p -leverage scores: orthonormal \rightarrow well-conditioned basis

L_p leverage scores

- For U a well-conditioned basis, *leverage scores* are given by row norms
- Can we find rows of high leverage without seeing the full matrix?

L_p leverage scores

- Idea: find local leverage scores in \widehat{U} and communicate only the most important rows to central coordinator
- Local scores found by computing a well-conditioned basis on a subset of the input

L_p leverage scores - theory

 Key result shows that globally important rows remain important (up to some poly(d) rescaling)

Locally	Globally
unimportant	unimportant
Χ	X

Sum of the leverage rows is $||U||_p^p \le \operatorname{poly}(d)$ so there can't be too many rows with high leverage score

Application: L_p-regression

- We seek $x = \operatorname{argmin}_{x} ||Ax b||_{\infty}$
- Summarise A to find A', and restrict b to these indices as b'
- Now find $\hat{x} = \operatorname{argmin}_{x} ||A'x b'||_{\infty}$ ("sketch and solve")
 - Argue correctness via well-conditioned basis
 - Obtain additive $\varepsilon \|b\|_{p}$ error after scaling the parameters

Empirical Evaluation

Method	WCB?	Threshold
Orth	ℓ_2	d/m
SPC3	ℓ_1	$d^{1.5}/m$
Identity	No	2/m
Uniform Sampling	No	None

- Study two datasets: 5 million row sample of US Census Data and 50000 rows of YearPredictionMSD
- Storage parameter b (number of rows sent) is varied

Experimental Summary

- Constructed a summary in sublinear space
 - Census: close to 0.01 error with ~2% of the data
- The summarization step is fast, and yields a compact summary
 - Less than 1 second to summarize data of 0.5M rows
- Faster total time than to use centralized exact solver
- Conditioning is robust across different measures and datasets

Thoughts on Distributed Data Summarization

- Data summarization leads to interesting technical questions
 - With (hopefully) interesting theory and practical implications
- Aim is often for protocols where distribution comes 'for free'
 - i.e. Summaries have a simple algebra, can be 'added'
 - Sometimes it's helpful to avoid explicit synchronization
- Recent applications lean towards machine learning
 - "Everybody else is doing it, so why can't we?"
 - ML gives challenging problems with plausible motivations

Final Summary

- There are two approaches in response to growing data sizes
 - Scale the computation up; scale the data down
- Summarization can be a useful tool in distributed protocols
 - Allow each entity to work with local data and minimize coordination
- Many open problems in this broad area
 - Machine learning/linear algebra a rich source of problems
- Continuing interest in applying and developing new theory
 - Always looking for new collaborators/students/postdocs

Research

European Research Council

Established by the European Commission 37