
Data Summarization
and

Distributed Computation

Graham Cormode

University of Warwick

G.Cormode@Warwick.ac.uk

Agenda for the talk

 My (patchy) history with PODC:

 This talk: recent examples of distributed summaries

– Learning graphical models from distributed streams

– Deterministic distributed summaries for high-dimensional regression

2

Computational scalability and “big” data

 Industrial distributed computing means scale up the computation

 Many great technical ideas:

– Use many cheap commodity devices

– Accept and tolerate failure

– Move code to data, not vice-versa

– MapReduce: BSP for programmers

– Break problem into many small pieces

– Add layers of abstraction to build massive DBMSs and warehouses

– Decide which constraints to drop: noSQL, BASE systems

 Scaling up comes with its disadvantages:

– Expensive (hardware, equipment, energy), still not always fast

 This talk is not about this approach!
3

Downsizing data

 A second approach to computational scalability:

scale down the data!

– A compact representation of a large data set

– Capable of being analyzed on a single machine

– What we finally want is small: human readable analysis / decisions

– Necessarily gives up some accuracy: approximate answers

– Often randomized (small constant probability of error)

– Much relevant work: samples, histograms, wavelet transforms

 Complementary to the first approach: not a case of either-or

 Some drawbacks:

– Not a general purpose approach: need to fit the problem

– Some computations don’t allow any useful summary
4

1. Distributed Streaming Machine Learning

Network

Machine Learning Model

Observation

Streams

 Data continuously generated across distributed sites

 Maintain a model of data that enables predictions

 Communication-efficient algorithms are needed!

6

Continuous Distributed Model

 Site-site communication only changes things by factor 2

 Goal: Coordinator continuously tracks (global) function of streams

– Achieve communication poly(k, 1/ε, log n)

– Also bound space used by each site, time to process each update

Coordinator

k sites

local stream(s)

seen at each site

S1 Sk

Track f(S1,…,Sk)

7

Challenges

 Monitoring is Continuous…

– Real-time tracking, rather than one-shot query/response

 …Distributed…

– Each remote site only observes part of the global stream(s)

– Communication constraints: must minimize monitoring burden

 …Streaming…

– Each site sees a high-speed local data stream and can be resource

(CPU/memory) constrained

 …Holistic…

– Challenge is to monitor the complete global data distribution

– Simple aggregates (e.g., aggregate traffic) are easier

Graphical Model: Bayesian Network

 Succinct representation of a joint

distribution of random variables

 Represented as a Directed Acyclic Graph

– Node = a random variable

– Directed edge =

conditional dependency

 Node independent of its non-

descendants given its parents

e.g. (WetGrass ⫫ Cloudy) | (Sprinkler, Rain)

 Widely-used model in Machine Learning

for Fault diagnosis, Cybersecurity
Weather Bayesian Network

Cloudy

Sprinkler Rain

WetGrass

https://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

Conditional Probability Distribution (CPD)

Parameters of the Bayesian network can be viewed as a set of

tables, one table per variable

Goal: Learn Bayesian Network Parameters

S R P(W=T) P(W=F)

T T
99/100

= 0.99
0.01

T F 0.9 0.1

F T 0.9 0.1

F F 0.0 1.0

S R W=T W=F Total

T T 99 1 100

T F 9 1 10

F T 45 5 50

F F 0 10 10

Sprinkler Rain

WetGrass

�� � �, �] =
Pr [�, �, �]

Pr [�, �]
=

����(�, �, �)

����(�, �)

Counter Table of WetGrass
CPD of WetGrass

Joint Counter Parent Counter

The Maximum Likelihood Estimator (MLE) uses

empirical conditional probabilities

Distributed Bayesian Network Learning

Parameters changing with new stream instance

Naïve Solution: Exact Counting (Exact MLE)

 Each arriving event at a site sends a message to a coordinator

– Updates counters corresponding to all the value combinations

from the event

 Total communication is proportional to the number of events

– Can we reduce this?

 Observation: we can tolerate some error in counts

– Small changes in large enough counts won’t affect probabilities

– Some error already from variation in what order events happen

 Replace exact counters with approximate counters

– A foundational distributed question: how to count approximately?

Distributed Approximate Counting

 We have k sites, each site runs the same algorithm:

– For each increment of a site’s counter:

 Report the new count n’i with probability p

– Estimate ni as n’i – 1 + 1/p if n’i > 0, else estimate as 0

 Estimator is unbiased, and has variance less than 1/p2

 Global count n estimated by sum of the estimates ni

 How to set p to give an overall guarantee of accuracy?

– Ideally, set p to √(k log 1/δ)/εn to get εn error with probability 1-δ

– Work with a coarse approximation of n up to a factor of 2

 Start with p=1 but decrease it when needed

– Coordinator broadcasts to halve p when estimate of n doubles

– Communication cost is proportional to O(k log(n) + √k/ε)
13

[Huang, Yi, Zhang PODS’12]

Challenge in Using Approximate Counters

How to set the approximation parameters for learning Bayes nets?

1. Requirement: maintain an accurate model

(i.e. give accurate estimates of probabilities)

��� ≤
��(�)

�� �
≤ ��

where:

� is the global error budget,

� is the given any instance vector,

��(�) is the joint probability using approximate algorithm,

�� � is the joint probability using exact counting (MLE)

2. Objective: minimize the communication cost of model maintenance

We have freedom to find different schemes to meet these requirements

� −Approximation to the MLE

 Expressing joint probability in terms of the counters:

�� � = ∏
�(��,� !(��))

�(� !(��))

"
#$% �� � = ∏

&(��,� !(��))

&(� !(��))

"
#$%

where:

 ' is the approximate counter

 (is the exact counter

)*� +, are the parents of variable +,

 Define local approximation factors as:

– -,: approximation error of counter '(+, ,)*�(+,))

– .,: approximation error of parent counter '()*�(+,))

 To achieve an �-approximation to the MLE we need:

��� ≤ ∏ (1 ± -,) ⋅ (1 ± .,)2
,$3 ≤ ��

Algorithm choices

We proposed three algorithms [C, Tirthapura, Yu ICDE 2018]:

 Baseline algorithm: divide error budgets uniformly across all

counters, αi, βi ∝ ε/n

 Uniform algorithm: analyze total error of estimate via variance,

rather than separately, so αi, βi ∝ ε/√n

 Non-uniform algorithm: calibrate error based on cardinality of

attributes (Ji) and parents (Ki), by applying optimization problem

16

Algorithms Result Summary

Algorithm
Approx. Factor of

Counters

Communication

Cost (messages)

Exact MLE None (exact counting) 5(67)

Baseline 5(�/7) 5 79 ⋅ log 6 / �

Uniform 5(�/ 7) 5 73.> ⋅ log 6 / �

Non-uniform 5 � ⋅
?�

@/A
B�

@/A

C
, 5 � ⋅

B�
@/A

D
at most Uniform

�: error budget, 7: number of variables, 6: total number of observations

E,: cardinality of variable +,, F,: cardinality of +,’s parents

- is a polynomial function of E, and F, , . is a polynomial function of F,

Empirical Accuracy

error to ground truth vs. training instances

(number of sites: 30, error budget: 0.1)

real world Bayesian networks Alarm (small), Hepar II (medium)

Communication Cost (training time)

training time vs. number of sites

(500K training instances, error budget: 0.1)

time cost (communication bound) on AWS cluster

Conclusions

 Communication-Efficient Algorithms to maintaining a

provably good approximation for a Bayesian Network

 Non-Uniform approach is the best, and adapts to the

structure of the Bayesian network

 Experiments show reduced communication and similar

prediction errors as the exact model

 Algorithms can be extended to perform classification and

other ML tasks

21

2. Distributed Data Summarization

'

A very simple distributed model:

each participant sends summary

of their input once to aggregator

• Can extend to hierarchies

Distributed Linear Algebra

 Linear algebra computations are key to much of machine learning

 We seek efficient scalable linear algebra approximate solutions

 We find deterministic distributed algorithms for Lp-regression

[C Dickens Woodruff ICML 2018]

22

Ordinary Least Squares Regression

 Regression: Input is ' ∈ ℝ2 ×J and target vector K ∈ ℝ2

– OLS formulation: find L = argmin ‖'L − K ‖9

– Takes time 5 7R9 centralized to solve via normal equations

 Can be approximated via reducing dependency on 7 by

compressing into columns of length roughly R/�9 (JLT)

– Can be performed distributed with some restrictions

 L2 (Euclidean) space is well understood, what about other Lp?

23

 A well-conditioned basis is akin to an ‘Lp orthonormal basis’

 S is an (-, .,)) wcb for the TUV ' if in entrywise)-norm:

— ‖S‖� ≤ -

— W X ≤ . SW � when � = 1/(1 +)) (dual norm)

— Can find -, . at most a small)UVZ R ≈ R
@

\
±

@

]

 S can be found in 5(7R9 + 7R> log 7)

24

Main Tool for Lp: Well Conditioned Basis

 L2 leverage scores defined via row norms of orthonormal basis

– Measure distance from the mean of the points

– In [0,1] and measure contribution to direction

– More unique points have higher leverage

– Approximate the shape of the data

25

Leverage scores

Lp-leverage scores: orthonormal

 well-conditioned basis

26

27

28

Lp leverage scores

 For S a well-conditioned basis, leverage scores are given by

row norms

 Can we find rows of high leverage without seeing the full

matrix?

S' '

S_

29

Lp leverage scores

 Idea: find local leverage scores in S_ and communicate only the

most important rows to central coordinator

 Local scores found by computing a well-conditioned basis on a

subset of the input

S' '

S_

 Key result shows that globally important rows remain

important (up to some)UVZ R rescaling)

 Sum of the leverage rows is ‖S ‖�
�

≤ poly(R) so there can’t

be too many rows with high leverage score

30

Lp leverage scores - theory

Locally
unimportant

Globally
unimportant

X X

 We seek L = argminb‖'L − K ‖c

 Summarise ' to find '′, and restrict K to these indices as Ke

 Now find Lf = argminb 'eL − Ke
c (“sketch and solve”)

 Argue correctness via well-conditioned basis

 Obtain additive ε K � error after scaling the parameters

31

Application: Lp-regression

 Study two datasets: 5
million row sample of
US Census Data and
50000 rows of
YearPredictionMSD

 Storage parameter K
(number of rows
sent) is varied

Method WCB? Threshold

Orth ℓ9 R/6

SPC3 ℓ3 R3.>/6

Identity No 2/6

Uniform
Sampling

No None

Empirical Evaluation

Identity isn’t ideal

1
−

− f/f
*

No consistent error behaviour for

Identity method

33

Significant and growing

difference in regression time

Sampling takes
longer to query

 Constructed a summary in sublinear space

 Census: close to 0.01 error with ~2% of the data

 The summarization step is fast, and yields a compact summary

 Less than 1 second to summarize data of 0.5M rows

 Faster total time than to use centralized exact solver

 Conditioning is robust across different measures and datasets

35

Experimental Summary

Thoughts on Distributed Data Summarization

 Data summarization leads to interesting technical questions

– With (hopefully) interesting theory and practical implications

 Aim is often for protocols where distribution comes ‘for free’

– i.e. Summaries have a simple algebra, can be ‘added’

– Sometimes it’s helpful to avoid explicit synchronization

 Recent applications lean towards machine learning

– “Everybody else is doing it, so why can’t we?”

– ML gives challenging problems with plausible motivations

36

 There are two approaches in response to growing data sizes

– Scale the computation up; scale the data down

 Summarization can be a useful tool in distributed protocols

– Allow each entity to work with local data and minimize coordination

 Many open problems in this broad area

– Machine learning/linear algebra a rich source of problems

 Continuing interest in applying and developing new theory

– Always looking for new collaborators/students/postdocs

Final Summary

37

