Data Anonymization

Graham Cormode

graham@research.att.com

Why Anonymize?

For Data Sharing

- Give real(istic) data to others to study without compromising privacy of individuals in the data
- Allows third-parties to try new analysis and mining techniques not thought of by the data owner
- For Data Retention and Usage
 - Various requirements prevent companies from retaining customer information indefinitely
 - E.g. Google progressively anonymizes IP addresses in search logs
 - Internal sharing across departments (e.g. billing \rightarrow marketing)

Models of Anonymization

Interactive Model (akin to statistical databases)

- Data owner acts as "gatekeeper" to data
- Researchers pose queries in some agreed language
- Gatekeeper gives an (anonymized) answer, or refuses to answer
- Send me your code" model
 - Data owner executes code on their system and reports result
 - Cannot be sure that the code is not malicious, compiles...
- Offline, aka "publish and be damned" model
 - Data owner somehow anonymizes data set
 - Publishes the results, and retires
 - Seems to best model many real releases

Objectives for Anonymization

- Prevent (high confidence) inference of associations
 - Prevent inference of salary for an individual in census data
 - Prevent inference of individual's video viewing history
 - Prevent inference of individual's search history in search logs
 - All aim to prevent linking sensitive information to an individual
- Have to model what knowledge might be known to attacker
 - Background knowledge: facts about the data set (X has salary Y)
 - Domain knowledge: broad properties of data (illness Z rare in men)

Utility

- Anonymization is meaningless if utility of data not considered
 - The empty data set has perfect privacy, but no utility
 - The original data has full utility, but no privacy
- What is "utility"? Depends what the application is...
 - For fixed query set, can look at max, average distortion
 - Problem for publishing: want to support unknown applications!
 - Need some way to quantify utility of alternate anonymizations

Part I: Syntactic Anonymizations

- "Syntactic anonymization" modifies the input data set
 - To achieve some 'syntactic property' intended to make reidentification difficult
 - Many variations have been proposed:
 - k-anonymity
 - I-diversity
 - t-closeness
 - ... and many many more

Tabular Data Example

Census data recording incomes and demographics

SSN	DOB	Sex	ZIP	Salary
11-1-111	1/21/76	Μ	53715	50,000
22-2-222	4/13/86	F	53715	55,000
33-3-333	2/28/76	Μ	53703	60,000
44-4-444	1/21/76	Μ	53703	65,000
55-5-555	4/13/86	F	53706	70,000
66-6-666	2/28/76	F	53706	75,000

◆ Releasing SSN → Salary association violates individual's privacy

- SSN is an identifier, Salary is a sensitive attribute (SA)

Tabular Data Example: De-Identification

Census data: remove SSN to create de-identified table

DOB	Sex	ZIP	Salary
1/21/76	Μ	53715	50,000
4/13/86	F	53715	55,000
2/28/76	Μ	53703	60,000
1/21/76	Μ	53703	65,000
4/13/86	F	53706	70,000
2/28/76	F	53706	75,000

Does the de-identified table preserve an individual's privacy?

- Depends on what other information an attacker knows

Tabular Data Example: Linking Attack

De-identified private data + publicly available data

DOB	Sex	ZIP	Salary		SSN	DOB
1/21/76	Μ	53715	50,000		11-1-111	1/21/76
4/13/86	F	53715	55,000		33-3-333	2/28/76
2/28/76	Μ	53703	60,000	1		
1/21/76	Μ	53703	65,000			
4/13/86	F	53706	70,000			
2/28/76	F	53706	75,000			

Cannot uniquely identify either individual's salary

– DOB is a quasi-identifier (QI)

Tabular Data Example: Linking Attack

De-identified private data + publicly available data

DOB	Sex	ZIP	Salary	SSN	DOB	Sex	ZIP
1/21/76	Μ	53715	50,000	11-1-111	1/21/76	Μ	53715
4/13/86	F	53715	55,000	33-3-333	2/28/76	Μ	53703
2/28/76	Μ	53703	60,000				
1/21/76	Μ	53703	65,000				
4/13/86	F	53706	70,000				
2/28/76	F	53706	75,000				

Uniquely identified both individuals' salaries

- [DOB, Sex, ZIP] is unique for majority of US residents [Sweeney 02]

Tabular Data Example: Anonymization

Anonymization through QI attribute generalization

DOB	Sex	ZIP	Salary		SSN	DOB	Sex	ZIP
1/21/76	Μ	537**	50,000		11-1-111	1/21/76	Μ	53715
4/13/86	F	537**	55,000		33-3-333	2/28/76	Μ	53703
2/28/76	*	537**	60,000	$\overline{//}$				
1/21/76	Μ	537**	65,000					
4/13/86	F	537**	70,000					
2/28/76	*	537**	75,000	ſ				

Cannot uniquely identify tuple with knowledge of QI values

- E.g., ZIP = 537^{**} → ZIP ∈ {53700, ..., 53799}

Tabular Data Example: Anonymization

Anonymization through sensitive attribute (SA) permutation

DOB	Sex	ZIP	Salary	SSN	DOB	Sex	ZIP
1/21/76	Μ	53715	55,000	11-1-111	1/21/76	Μ	53715
4/13/86	F	53715	50,000	33-3-333	2/28/76	Μ	53703
2/28/76	Μ	53703	60,000				
1/21/76	Μ	53703	65,000				
4/13/86	F	53706	75,000				
2/28/76	F	53706	70,000				

Can uniquely identify tuple, but uncertainty about SA value

– Much more precise form of uncertainty than generalization

k-Anonymization [Samarati, Sweeney 98]

- k-anonymity: Table T satisfies k-anonymity wrt quasi-identifiers
 QI iff each tuple in (the multiset) T[QI] appears at least k times
 - Protects against "linking attack"
- k-anonymization: Table T' is a k-anonymization of T if T' is generated from T, and T' satisfies k-anonymity

DOB	Sex	ZIP	Salary
1/21/76	Μ	53715	50,000
4/13/86	F	53715	55,000
2/28/76	Μ	53703	60,000
1/21/76	Μ	53703	65,000
4/13/86	F	53706	70,000
2/28/76	F	53706	75,000

DOB	Sex	ZIP	Salary
1/21/76	Μ	537**	50,000
4/13/86	F	537**	55,000
2/28/76	*	537**	60,000
1/21/76	Μ	537**	65,000
4/13/86	F	537**	70,000
2/28/76	*	537**	75,000

Homogeneity Attack [Machanavajjhala+06]

- ◆ Issue: k-anonymity requires each tuple in (the multiset) T[QI] to appear ≥ k times, but does not say anything about the SA values
 - If (almost) all SA values in a QI group are equal, loss of privacy!

Ok!

- The problem is with the choice of grouping, not the data
- For some groupings, no loss of privacy

DOB	Sex	ZIP	Salary
1/21/76	Μ	53715	50,000
4/13/86	F	53715	55,000
2/28/76	Μ	53703	60,000
1/21/76	Μ	53703	50,000
4/13/86	F	53706	55,000
2/28/76	F	53706	60,000

	DOB	Sex	ZIP	Salary
	76-86	*	53715	50,000
	76-86	*	53715	55,000
•	76-86	*	53703	60,000
	76-86	*	53703	50,000
	76-86	*	53706	55,000
	76-86	*	53706	60,000

I-Diversity [Machanavajjhala+06]

- Intuition: Most frequent value does not appear too often compared to the less frequent values in a QI group
- ♦ Simplified /-diversity defn: for each group, max frequency ≤ 1//

- /-diversity((1/21/76, *, 537**)) = 1

DOB	Sex	ZIP	Salary
1/21/76	*	537**	50,000
4/13/86	*	537**	55,000
2/28/76	*	537**	60,000
1/21/76	*	537**	50,000
4/13/86	*	537**	55,000
2/28/76	*	537**	60,000

Simple Algorithm for *I*-diversity

A simple greedy algorithm provides *l*-diversity"

- Sort tuples based on attributes so similar tuples are close
- Start with group containing just first tuple
- Keeping adding tuples to group in order until I-diversity met
- Output the group, and repeat on remaining tuples

DOB	Sex	ZIP	Salary		DOB	Sex	ZIP	Salary
1/21/76	Μ	53715	50,000		1/21/76	Μ	53715	50,000
4/13/86	F	53715	50,000		4/13/86	F	53715	50,000
2/28/76	Μ	53703	60,000	2-diversity	2/28/76	Μ	53703	60,000
1/21/76	Μ	53703	65,000		1/21/76	Μ	53703	65,000
4/13/86	F	53706	50,000		4/13/86	F	53706	50,000
2/28/76	F	53706	60,000		2/28/76	F	53706	60,000

– Knowledge of the algorithm used can reveal associations!

Syntactic Anonymization Summary

Pros:

- Provide natural definitions (e.g. k-anonymity)
- Keeps data in similar form to input (e.g. as tuples)
- Give privacy beyond simply removing identifiers
- Cons:
 - No strong guarantees known against arbitrary adversaries
 - Resulting data not always convenient to work with
 - Attack and patching has led to a glut of definitions

Part 2: Differential Privacy

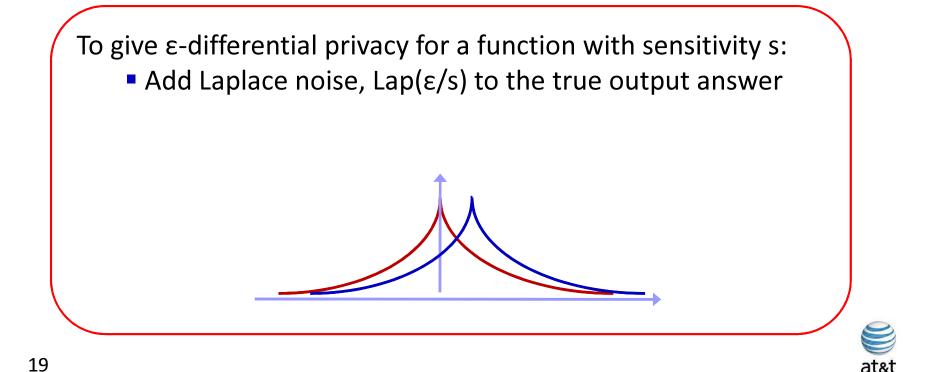
```
A randomized algorithm K satisfies ε-differential
privacy if:
Given any pair of "neighboring" data sets,
D and D', and any property S:
```

```
\Pr[K(D) \in S] \leq e^{\epsilon} \Pr[K(D') \in S]
```

Introduced by Cynthia Dwork, Frank McSherry, Kobbi Nissim, Adam Smith in 2006

Differential Privacy for numeric functions

Sensitivity of publishing for a numeric function f:
 s = max_{X,X'} |f(X) - f(X')|, X, X' differ by 1 individual



Laplace Distribution

• Laplace with parameter λ is exponential, symmetric about 0:

- Density at x is $f(x) \propto \exp(-|x|/\lambda)$

- Hence, $f(x)/f(x+\delta) = \exp(-|x|/\lambda)/\exp(-|x+\delta|/\lambda) \le \exp(\delta/\lambda)$
- Differential privacy for numeric values:
 - Sensitivity = s
 - Hence, $\delta = s$
 - Set $\lambda = \varepsilon/s$
 - Ratio of probability at any point x is at most $exp(\varepsilon)$

Sensitivity of some functions

- "Count" has sensitivity 1
 - E.g. count how many students are left-handed
- Sum and median have sensitivity Δ
 - Δ = maximum range of possible values
- Histograms / contingency tables have sensitivity 2
 - E.g. Count how many people in salary range 0-50K; 50-100K; 100-150K; 150-200K; 200K+

Dealing with sensitivity

Sometimes sensitivity (and hence noise) can be very high:

- Sensitivity of (sum of salaries) ~ \$1BN (some people make this much)
- Replace with clipped value (e.g. cut off at \$1M)
- Work with histograms/contingency tables instead

Contingency Tables

Zip	0-50K	50-100K	100-150K	150K+
53703	200	11	10	5
53706	18	5	65	200
53715	60	100	100	40

Noisy Contingency Tables

Zip	0-50K	50-100K	100-150K	150K+
53703	205	8	9	7
53706	19	8	66	201
53715	59	97	98	40

Does this provide sufficient privacy?

Exponential Mechanism

- Exponential mechanism gives more general way to release functions
- Given input x, define a "quality" function q_x(y) over possible outputs that captures desirability of outputting y
 - q(y) = 0 means perfect match; larger q values less desirable
- Define s = sensitivity of function q
- Output y with probability proportional to $exp(-\epsilon q_x(y))$
 - Claim (without proof): process has (Es)-differential privacy
 - Note: must range over all possible outputs for correctness
 - May be very slow to compute if many possible outputs

Exponential Mechanism for Median

- Given input X = set of n elements in range {0...U}
- Define rank(x) = number of elements less than x
 - Median: x s.t. rank(x) = n/2
- ♦ Set q(y) = |rank(y) n/2|
 - Sensitivity of rank = 2
- Use exponential mechanism with q:
 - Elements in range [x_i...x_{i+1}] have same rank, so same q value
 - Compute probability of $[x_{j}...x_{j+1}]$ as $(x_{j+1}-x_{j}) \cdot exp(-\epsilon |rank(x_{j})-n/2|)$
 - Then pick element uniformly from range $x_{j}...x_{j+1}$
 - Median now takes time O(n), not O(U)

State of Anonymization

- Data privacy and anonymization is a subject of ongoing research in 2011
- Many unresolved challenges:
 - How can a social network release a substantial data set without revealing private connections between users?
 - How can a video website release information on viewing patterns without disclosing who watched what?
 - How can a search engine release information on search queries without revealing who searched for what?
 - How to release private information efficiently over large scale data?

Concluding Remarks

- Like crypto, anonymization proceeds by proposing anonymization methods and attacks upon them
 - Difference: Successful attacks on crypto reveal messages
 - Attacks on anonymization increase probability of inference
- Long-term goal: propose anonymization methods which resist feasible attacks
 - Anonymization should not be the weakest link

