

Building Blocks of Privacy:
Differentially Private Mechanisms

Graham Cormode
graham@cormode.org

The data release scenario

2

Data Release

 Much interest in private data release

– Practical: release of AOL, Netflix data etc.

– Research: hundreds of papers

 In practice, many data-driven concerns arise:

– How to design algorithms with a meaningful privacy guarantee?

– Trading off noise for privacy against the utility of the output?

– Efficiency / practicality of algorithms as data scales?

– How to interpret privacy guarantees?

– Handling of common data features, e.g. sparsity?

 This talk: describe some tools to address these issues

3

Differential Privacy

 Principle: released info reveals little about any individual

– Even if adversary knows (almost) everything about everyone else!

 Thus, individuals should be secure about contributing their data

– What is learnt about them is about the same either way

 Much work on providing differential privacy (DP)

– Simple recipe for some data types e.g. numeric answers

– Simple rules allow us to reason about composition of results

– More complex algorithms for arbitrary data (many DP mechanisms)

 Adopted and used by several organizations:

– US Census, Common Data Project, Facebook (?)

Differential Privacy Definition

The output distribution of a differentially private algorithm
changes very little whether or not any individual’s data is
included in the input – so you should contribute your data

A randomized algorithm K satisfies ε-differential privacy if:
Given any pair of neighboring data sets,
D and D’, and S in Range(K):

 Pr[K(D) = S] ≤ eε Pr[K(D’) = S]

Neighboring datasets differ in one individual: we say |D–D’|=1

Achieving Differential Privacy

 Suppose we want to output the number of left-handed
people in our data set

– Can reduce the description of the data to just the answer, n

– Want a randomized algorithm K(n) that will output an integer

– Consider the distribution Pr[K(n) = m] for different m

 Write exp() = , and Pr[K(n) = n] = pn. Then:
Pr[K(n) = n-1] Pr[K(n-1)=n-1] = pn-1

 Pr[K(n) = n-2] Pr[K(n-1) = n-2] 2 Pr[K(n-2)=n-2] = 2 pn-2

 Pr[K(n) = n-i] i pn-i

 Similarly, Pr[K(n) = n+i] i pn+i

6

Achieving Differential Privacy

 We have Pr[K(n) = n-i] i pn-i and Pr[K(n) = n+i] i pn+i

 Within these constraints, we want to maximize pn

– This maximizes the probability of returning “correct” answer

– Means we turn the inequalities into equalities

 For simplicity, set pn = p for all n

– Means the distribution of “shifts” is the same whatever n is

 Yields: Pr[K(n) = n-i] = i p and Pr[K(n) = n+i] i p

– Sum over all shifts i:
 p + i=1

 2i p = 1
 p + 2p /(1-) = 1
 p(1 - + 2)/(1-) = 1
 p = (1-)/(1+)

7

Geometric Mechanism

 What does this mean?

– For input n, output distribution is Pr[K(n) = m]= |m-n| . (1-)/(1+)

 What does this look like?

– Symmetric geometric distribution, centered around n

– We draw from this distribution centered around zero, and add to
the true answer

– We get the “true answer plus (symmetric geometric) noise”

 A first differentially private mechanism for outputting a count

– We call this “the geometric mechanism”

8

Truncated Geometric Mechanism

 Some practical concerns:

– This mechanism could output any value, from - to +

 Solution: we can “truncate” the output of the mechanism

– E.g. decide we will never output any value below zero, or above N

– Any value drawn below zero is “rounded up” to zero

– Any value drawn above N is “rounded down” to N

– This does not affect the differential privacy properties

– Can directly compute the closed-form probability of these
outcomes

9

Laplace Mechanism

 Sometimes we want to output real values instead of integers

 The Laplace Mechanism naturally generalizes Geometric

– Add noise from a symmetric continuous distribution to true answer

– Laplace distribution is a symmetric exponential distribution

– Is DP for same reason as geometric: shifting the distribution
changes the probability by at most a constant factor

– PDF: Pr[X = x] = 1/2 exp(-|x|/)
Variance = 22

10

Sensitivity of Numeric Functions

 For more complex functions, we need to calibrate the noise
to the influence an individual can have on the output

– The (global) sensitivity of a function F is the maximum
(absolute) change over all possible adjacent inputs

– S(F) = maxD, D’ : |D-D’|=1 |F(D) – F(D’)| = 1

– Intuition: S(F) characterizes the scale of the influence of one
individual, and hence how much noise we must add

 S(F) is small for many common functions

– S(F) = 1 for COUNT

– S(F) = 2 for HISTOGRAM

– Bounded for other functions (MEAN, covariance matrix…)

11

Laplace Mechanism with Sensitivity

 Release F(x) + Lap(S(F)/) to obtain -DP guarantee

– F(x) = true answer on input x

– Lap() = noise sampled from Laplace dbn with parameter

– Exercise: show this meets -differential privacy requirement

 Intuition on impact of parameters of differential privacy (DP):

– Larger S(F), more noise (need more noise to mask an individual)

– Smaller , more noise (more noise increases privacy)

– Expected magnitude of |Lap()| is (approx) 1/

12

Sequential Composition

 What happens if we ask multiple questions about same data?

– We reveal more, so the bound on differential privacy weakens

 Suppose we output via K1 and K2 with 1, 2 differential privacy:

 Pr[K1(D) = S1] exp(1) Pr[K1(D’) = S1], and

 Pr[K2(D) = S2] exp(2) Pr[K2(D’) = S2]

 Pr[(K1(D) = S1), (K2(D) = S2)] = Pr[K1(D)=S1] Pr[K2(D) = S2]
 exp(1) Pr[K1(D’) = S1] exp(2) Pr[K2(D’) = S2]
 = exp(1 + 2) Pr[(K1(D’) = S1), (K2(D’) = S2)]

– Use the fact that the noise distributions are independent

 Bottom line: result is 1 + 2 differentially private

– Can reason about sequential composition by just “adding the ’s”

13

Parallel Composition

 Sequential composition is pessimistic

– Assumes outputs are correlated, so privacy budget is diminished

 If the inputs are disjoint, then result is max(1, 2) private

 Example:

– Ask for count of people broken down by handedness, hair color

– Each cell is a disjoint set of individuals

– So can release each cell with -differential privacy (parallel
composition) instead of 6 DP (sequential composition)

14

Redhead Blond Brunette

Left-handed 23 35 56

Right-handed 215 360 493

Exponential Mechanism

 What happens when we want to output non-numeric values?

 Exponential mechanism is most general approach

– Captures all possible DP mechanisms

– But ranges over all possible outputs, may not be efficient

 Requirements:

– Input value x

– Set of possible outputs O

– Quality function, q, assigns “score” to possible outputs o O

 q(x, o) is bigger the “better” o is for x

– Sensitivity of q = S(q) = maxx,x’,o |q(x,o) – q(x’,o)|

15

Exponential Mechanism

 Sample output o O with probability
 Pr[K(x) = o] = exp(q(x,o)) / (o’O exp(q(x,o’)))

 Result is (2 S(q))-DP

– Shown by considering change in numerator and denominator
under change of x is at most a factor of exp(S(q))

 Scalability: need to be able to draw from this distribution

 Generalizations:

– O can be continuous, becomes an integral

– Can apply a prior distribution over outputs as P(o)

 We assume a uniform prior for simplicity

16

Exponential Mechanism Example 1: Count

 Suppose input is a count n, we want to output (noisy) n

– Outputs O = all integers

– q(o,n) = -|o-n|

– S(q) = 1

– Then Pr[K(n) = o] = exp(- |o-n|)/(o -|o-n|) = -|o-n| (1-)/(1-)

– Simplifies to the Geometric mechanism!

 Similarly, if O = all reals, applying exponential mechanism results
in the Laplace Mechanism

 Illustrates the claim that Exponential Mechanism captures all
possible DP mechanisms

17

Exponential Mechanism, Example 2: Median

 Let M(X) = median of set of values in range [0,T] (e.g. median age)

 Try Laplace Mechanism: S(M) = T

– There can be datasets X, X’ where M(X) = 0, M(X’) = T, |X-X’|=1

– Consider X = [0n, 0, Tn], X’ = [0n, T, Tn]

– Noise from Laplace mechanism outweighs the true answer!

 Exponential Mechanism: set q(o,X) = -| rankX(o) - |X|/2|

– Define rankX(o) as the number of elements in X dominated by o

– Note, rankX(M(X)) = |X|/2 : median has rank half

– S(q) = 1: adding or removing an individual changes q by at most 1

– Then Pr[K(X) = o] = exp(q(o,X))/(o’ O exp(q(o’,X)))

– Problem: O could be very large, how to make efficient?

18

Exponential Mechanism, Example 2: Median

 Observation: for many values of o, q(o, X) is the same:

– Index X in sorted order so x1 x2 x3 … xn

– Then for any xi o < o’ xi+1, rankX(o) = rankX(o’)

– Hence q(o,X) = q(o’,X)

 Break possible outputs into ranges:

– O0 = [0,x1] O1 = [x1, x2] … On = [xn, T]

– Pick range Oj with probability proportional to |Oj|exp(q(O,X))

– Pick output o Oj uniformly from the range

– Time cost is proportional to number of ranges n (after sorting X)

 Similar tricks make exponential mechanism practical elsewhere

19

Recap

 Have developed a number of building blocks for DP:

– Geometric and Laplace mechanism for numeric functions

– Exponential mechanism for sampling from arbitrary sets

 And “cement” to glue things together:

– Parallel and sequential composition theorems

 With these blocks and cement, can build a lot

– Many papers arrive from careful combination of these tools!

 Useful fact: any post-processing of DP output remains DP

– (so long as you don’t access the original data again)

– Helps reason about privacy of data release processes

20

Case Study: Sparse Spatial Data

 Consider location data of many individuals

– Some dense areas (towns and cities), some sparse (rural)

 Applying DP naively simply generates noise

– lay down a fine grid, signal overwhelmed by noise

 Instead: compact regions with sufficient number of points

21

Private Spatial decompositions

 Build: adapt existing methods to have differential privacy

 Release: a private description of data distribution
(in the form of bounding boxes and noisy counts)

quadtree kd-tree

22

Building a Private kd-tree

 Process to build a private kd-tree

 Input: maximum height h, minimum leaf size L, data set

 Choose dimension to split

 Get (private) median in this dimension

 Create child nodes and add noise to the counts

 Recurse until:

 Max height is reached

 Noisy count of this node less than L

 Budget along the root-leaf path has used up

 The entire PSD satisfies DP by the composition property

23

Building PSDs – privacy budget allocation

 Data owner specifies a total budget reflecting the level of
anonymization desired

 Budget is split between medians and counts

– Tradeoff accuracy of division with accuracy of counts

 Budget is split across levels of the tree

– Privacy budget used along any root-leaf path should total

 Sequential

composition

Parallel composition

24

Privacy budget allocation

 How to set an i for each level?

– Compute the number of nodes touched by a ‘typical’ query

– Minimize variance of such queries

– Optimization: min i 2
h-i / i

2 s.t. i i =

– Solved by i (2(h-i))1/3 : more to leaves

– Total error (variance) goes as 2h/2

 Tradeoff between noise error and spatial uncertainty

– Reducing h drops the noise error

– But lower h increases the size of leaves, more uncertainty

25

Post-processing of noisy counts

 Can do additional post-processing of the noisy counts

– To improve query accuracy and achieve consistency

 Intuition: we have count estimate for a node and for its children

– Combine these independent estimates to get better accuracy

– Make consistent with some true set of leaf counts

 Formulate as a linear system in n unknowns

– Avoid explicitly solving the system

– Expresses optimal estimate for node v in terms of estimates of
ancestors and noisy counts in subtree of v

– Use the tree-structure to solve in three passes over the tree

– Linear time to find optimal, consistent estimates

Data Transformations

 Can think of trees as a ‘data-dependent’ transform of input

 Can apply other data transformations

 General idea:

– Apply transform of data

– Add noise in the transformed space (based on sensitivity)

– Publish noisy coefficients, or invert transform (post-processing)

 Goal: pick a transform that preserves good properties of data

– And which has low sensitivity, so noise does not corrupt

27

Original
Data

Transform
Coefficients

Noisy
Coefficients

Noise Private
Data

Invert

Wavelet Transform

 Haar wavelet transform commonly used to approximate data

– Any 1D range is expressed using log n coefficients

– Each input point affects log n coefficients

– Is a linear, orthonormal transform

 Can add noise to wavelet coefficients

– Treat input as a 1D histogram of counts

– Bounded sensitivity: each individual affects coefficients by O(1)

– Can transform noisy coefficients back to get noisy histogram

 Range queries are answered well in this model

– Each range query picks up noise (variance) O(log3 n /)

– Directly adding noise to input would give noise O(n /)

28

Other Transforms

Many other transforms can be applied within DP

 (Discrete) Fourier Transform: also bounded sensitivity

– Often need only a fixed set of coefficients: further reduces S(F)

– Used for representing data cube counts, time series

 Hierarchical Transforms: binary trees and quadtrees

 Randomized Transforms: sketches and compressed sensing

29

Local Sensitivity

 A common fallacy: using local sensitivity instead of global

– Global sensitivity S(F) = maxx,x’ : |x-x’|=1 |F(x)-F(x’)|

– Local sensitivity S(F,x) = maxx’ : |x-x’|=1 |F(x)-F(x’)|

– These can be very different: local can be much smaller than global

– It is tempting (but incorrect) to calibrate noise to local sensitivity

 Bad case for local sensitivity: Median

– Consider X = [0n, 0, 0, Tn-1], X’ = [0n, 0, Tn], X’’ = [0n, T, Tn]

– S(F,X) = 0 while S(F, X’) = T

– Scale of the noise will reveal exactly which case we are in

 Still, there has to be something better than always using global?

– Such bad cases seem artificial, rare

30

Smooth Sensitivity

 Previous case was bad because local sensitivity was low, but
“close” to a case where local sensitivity was high

 “Smooth sensitivity” combines sensitivity from all
neighborhoods (based on parameter)

– SS(F,x) = maxo O LS(F,o) exp(- |o – x|)

– Contribution of output o is decayed exponentially based on
distance of o from x, |o – x|

– Can add Laplace noise scaled by SS(F,x) to obtain (variant of) DP

31

Smooth Sensitivity: Example

 Consider the median function M over n items again

– Compute the maximum change in the median for each distance d

– LS measures when median changes from xi to xi+1

 So LS at distance d is at most max0 jd (xn/2 +j – xn/2+j-d-1)

– Largest gap that can be created by inserting/deleting at most d
items

 Gives SS(M,x) = max0 d n exp(-d) max0j d (xn/2+j - xn/2+j-d-1)

– Can compute in time O(n2)

– Empirically, exponential mechanism seems preferable

– No generic process for computing smooth sensitivity

32

Sample-and-aggregate

 Sample-and-aggregate gives a useful template

– Intuition: sampling is almost DP - can’t be sure who is included

– Break input into moderate number of blocks, m

– Compute desired function on each block

– Snap to some range [min, max] and aggregate (e.g. mean)

– Add Laplace noise scaled by sensitivity (max-min)

33

Data

Block1 Block2 Block3 Blockm …

f1 f2 f3 fm …

(Windsorized)
Mean

Noisy
mean

Sparse Data

 Suppose we have many (overlapping) queries, most of which
have a small answer, but we don’t know which

– We are only interesting in large answers (e.g. frequent itemsets)

– Two problems: time efficiency, and “privacy efficiency”

 Time efficiency:

– Don’t want to add noise to every single zero-valued query

– Assume we can materialize all non-zero query answers

– Count how many are zero

– Compute probability of noise pushing a zero-query past threshold

– Sample from Binomial distribution how many to “upgrade”

– Sample noisy value conditioned on passing threshold

34

Sparse Data – Privacy Efficiency

 Only want to pay for c queries with that exceed threshold T

– Assume all queries have sensitivity S

 Compute noisy threshold T’ = T + Lap(2S/)

 For each query, add noise Lap(2Sc/), only output if above T’

 Result is -DP

– For “suppressed” answers, probability of seeing same output is
about the same as if T’ was a little higher on neighboring input

– For released answers, DP follows from Laplace mechanism

 Result is reasonably accurate: with high probability,

– All suppressed answers are smaller than T +

– All released answers have error at most

for parameter (c,1/, S), and at most c query answers > T -
35

Multiplicative weights

 The idea of “multiplicative weights” widely used in optimization

– Up-weight ‘good’ answers, down-weight ‘poor’ answers

– Applied to output of DP mechanism

 Set-up:

– (Private) input, represented as vector D with n entries

– Q, set of queries over x (matrix)

– T, bound on number of iterations

– Output: -DP vector A so that Q(A) Q(D)

36

Multiplicative Weights Algorithm

 Initialize vector A0 to assign uniform weight for each value

 For i=1 to T:

– Exponential Mechanism (/2T) to sample j prop. to |Qj(Ai) – Qj(D)|

 Try to find query with large error

– Laplace Mechanism to estimate = (Qj(A) – Qj(D)) + Lap(2T/)

 Error in the selected query

– Set Ai = Ai-1 . exp(Qj(D)/2n), normalize so that Ai is a distribution

 (Noisily) reward good answers, penalize poor answers

 Output A = averagei nAi

– Privacy follows via sequential composition of EM and LM steps

– Accuracy (should) improve in each iteration, up to log iterations

37

Other topics

 Huge amount of work in DP across theory, security, DB…

 Many topics not touched on in this tutorial:

– Connections to game theory and auction design

– Mining primitives: regression, clustering, frequent itemsets

– Efforts in programming languages and systems to support DP

– Variant definitions: (,)-DP, other privacy/adversary models

– Lower bounds for privacy (what is not possible)

– Applications to graph data (social networks), mobility data etc.

– Privacy over data streams: pan-privacy and continual observation

38

Concluding Remarks

 Differential privacy can be applied effectively for data release

 Care is still needed to ensure that release is allowable

– Can’t just apply DP and forget it: must analyze whether data
release provides sufficient privacy for data subjects

 Many open problems remain:

– Transition these techniques to tools for data release

– Want data in same form as input: private synthetic data?

– Allow joining anonymized data sets accurately

– Obtain alternate (workable) privacy definitions

39

Thank you!

References – Basic Building Blocks

 Differential privacy, Laplace Mechanism and Sensitivity:
– Calibrating Noise to Sensitivity in Private Data Analysis. Cynthia

Dwork, Frank McSherry, Kobbi Nissim, Adam Smith. Theory of
Cryptography Conference (TCC), 2006.

– Differential Privacy. Cynthia Dwork, ICALP 2006

 Geometric Mechanism
– Universally utility-maximizing privacy mechanisms. Arpita Ghosh, Tim

Roughgarden, Mukund Sundararajan. STOC 2009

 Sequential and Parallel Composition, Median Example
– Privacy integrated queries: an extensible platform for privacy-

preserving data analysis. Frank McSherry. SIGMOD 2009.

 Exponential Mechanism
– Mechanism Design via Differential Privacy. Frank McSherry and Kunal

Talwar. FOCS, 2007 40

References – Applications & Transforms

 Spatial Data Application
– Differentially private spatial decompositions. Graham Cormode,

Magda Procopiuc, Entong Shen, Divesh Srivastava, and Ting Yu. In
International Conference on Data Engineering (ICDE), 2012

 Data Transforms
– Differential privacy via wavelet transforms. Xiaokui Xiao, Guozhang

Wang, Johannes Gehrke, ICDE 2010

– Privacy, accuracy, and consistency too: a holistic solution to
contingency table release. Boaz Barak, Kamalika Chaudhuri, Cynthia
Dwork, Satyen Kale, Frank Mcsherry, Kunal Talwar. PODS 2007

– Differentially Private Aggregation of Distributed Time-Series with
Transformation and Encryption. Vibhor Rastogi and Suman Nath,
SIGMOD 2010

41

References – Advanced Mechanisms

 Smooth Sensitivity, Sample and Aggregate
– Smooth Sensitivity and Sampling in Private Data Analysis.

Kobbi Nissim, Sofya Raskhodnikova and Adam Smith. STOC 07

– GUPT: Privacy Preserving Data Analysis Made Easy. Prashanth Mohan,
Abhradeep Thakurta, Elaine Shi, Dawn Song, David Culler. SIGMOD 2012

 Sparse Data Processing
– Differentially Private Summaries for Sparse Data. Graham Cormode,

Magda Procopiuc, Divesh Srivastava, and Thanh Tran. ICDT 2012

– A Multiplicative Weights Mechanism for Privacy Preserving Data Analysis.
Moritz Hardt and Guy Rothblum. FOCS 2010.

 Multiplicative Weights
– A simple and practical algorithm for differentially private data release.

Moritz Hardt, Katrina Ligett, Frank McSherry. NIPS 2012

 42

