

Building Blocks of Privacy: Differentially Private Mechanisms

Graham Cormode

graham@cormode.org

The data release scenario

Data Release

- Much interest in private data release
 - Practical: release of AOL, Netflix data etc.
 - Research: hundreds of papers
- In practice, many data-driven concerns arise:
 - How to design algorithms with a meaningful privacy guarantee?
 - Trading off noise for privacy against the utility of the output?
 - Efficiency / practicality of algorithms as data scales?
 - How to interpret privacy guarantees?
 - Handling of common data features, e.g. sparsity?
- This talk: describe some tools to address these issues

Differential Privacy

Principle: released info reveals little about any individual

- Even if adversary knows (almost) everything about everyone else!
- Thus, individuals should be secure about contributing their data
 - What is learnt about them is about the same either way
- Much work on providing differential privacy (DP)
 - Simple recipe for some data types e.g. numeric answers
 - Simple rules allow us to reason about composition of results
 - More complex algorithms for arbitrary data (many DP mechanisms)
- Adopted and used by several organizations:
 - US Census, Common Data Project, Facebook (?)

Differential Privacy Definition

The output distribution of a differentially private algorithm changes very little whether or not any individual's data is included in the input – so you should contribute your data

A randomized algorithm K satisfies ε-differential privacy if:
 Given any pair of neighboring data sets,
 D and D', and S in Range(K):

 $Pr[K(D) = S] \leq e^{\varepsilon} Pr[K(D') = S]$

Neighboring datasets differ in one individual: we say |D-D'|=1

Achieving Differential Privacy

- Suppose we want to output the number of left-handed people in our data set
 - Can reduce the description of the data to just the answer, n
 - Want a randomized algorithm K(n) that will output an integer
 - Consider the distribution Pr[K(n) = m] for different m
- Write $\exp(\varepsilon) = \alpha$, and $\Pr[K(n) = n] = p_n$. Then: $\Pr[K(n) = n-1] \le \alpha \Pr[K(n-1)=n-1] = \alpha p_{n-1}$ $\Pr[K(n) = n-2] \le \alpha \Pr[K(n-1) = n-2] \le \alpha^2 \Pr[K(n-2)=n-2] = \alpha^2 p_{n-2}$ $\Pr[K(n) = n-i] \le \alpha^i p_{n-i}$ Similarly, $\Pr[K(n) = n+i] \le \alpha^i p_{n+i}$

Achieving Differential Privacy

- We have $Pr[K(n) = n-i] \le \alpha^i p_{n-i}$ and $Pr[K(n) = n+i] \le \alpha^i p_{n+i}$
- Within these constraints, we want to maximize p_n
 - This maximizes the probability of returning "correct" answer
 - Means we turn the inequalities into equalities
- For simplicity, set p_n = p for all n
 - Means the distribution of "shifts" is the same whatever n is
- Yields: $Pr[K(n) = n-i] = \alpha^i p$ and $Pr[K(n) = n+i] \le \alpha^i p$
 - Sum over all shifts i:

$$p + \sum_{i=1}^{\infty} 2\alpha^{i} p = 1$$

p + 2p \alpha/(1-\alpha) = 1
p(1 - \alpha + 2\alpha)/(1-\alpha) = 1
p = (1-\alpha)/(1+\alpha)

Geometric Mechanism

- What does this mean?
 - For input n, output distribution is $Pr[K(n) = m] = \alpha^{|m-n|} \cdot (1-\alpha)/(1+\alpha)$
- What does this look like?

- Symmetric geometric distribution, centered around n
- We draw from this distribution centered around zero, and add to the true answer
- We get the "true answer plus (symmetric geometric) noise"
- A first differentially private mechanism for outputting a count
 - We call this "the geometric mechanism"

Truncated Geometric Mechanism

- Some practical concerns:
 - This mechanism could output any value, from - ∞ to + ∞
- Solution: we can "truncate" the output of the mechanism
 - E.g. decide we will never output any value below zero, or above N
 - Any value drawn below zero is "rounded up" to zero
 - Any value drawn above N is "rounded down" to N
 - This does not affect the differential privacy properties
 - Can directly compute the closed-form probability of these outcomes

Laplace Mechanism

- Sometimes we want to output real values instead of integers
- The Laplace Mechanism naturally generalizes Geometric

- Add noise from a symmetric continuous distribution to true answer
- Laplace distribution is a symmetric exponential distribution
- Is DP for same reason as geometric: shifting the distribution changes the probability by at most a constant factor
- PDF: $Pr[X = x] = 1/2\lambda \exp(-|x|/\lambda)$ Variance = $2\lambda^2$

Sensitivity of Numeric Functions

- For more complex functions, we need to calibrate the noise to the influence an individual can have on the output
 - The (global) sensitivity of a function F is the maximum (absolute) change over all possible adjacent inputs
 - $S(F) = max_{D, D': |D-D'|=1} |F(D) F(D')| = 1$
 - Intuition: S(F) characterizes the scale of the influence of one individual, and hence how much noise we must add
- S(F) is small for many common functions
 - S(F) = 1 for COUNT
 - S(F) = 2 for HISTOGRAM
 - Bounded for other functions (MEAN, covariance matrix...)

Laplace Mechanism with Sensitivity

- Release $F(x) + Lap(S(F)/\epsilon)$ to obtain ϵ -DP guarantee
 - F(x) = true answer on input x
 - Lap(λ) = noise sampled from Laplace dbn with parameter λ
 - Exercise: show this meets ε -differential privacy requirement
- Intuition on impact of parameters of differential privacy (DP):
 - Larger S(F), more noise (need more noise to mask an individual)
 - Smaller ε, more noise (more noise increases privacy)
 - Expected magnitude of $|Lap(\lambda)|$ is (approx) $1/\lambda$

Sequential Composition

- What happens if we ask multiple questions about same data?
 - We reveal more, so the bound on ε differential privacy weakens
- Suppose we output via K_1 and K_2 with ε_1 , ε_2 differential privacy: $Pr[K_1(D) = S_1] \le exp(\varepsilon_1) Pr[K_1(D') = S_1]$, and $Pr[K_2(D) = S_2] \le exp(\varepsilon_2) Pr[K_2(D') = S_2]$ $Pr[(K_1(D) = S_1), (K_2(D) = S_2)] = Pr[K_1(D) = S_1] Pr[K_2(D) = S_2]$ $\le exp(\varepsilon_1) Pr[K_1(D') = S_1] exp(\varepsilon_2) Pr[K_2(D') = S_2]$ $= exp(\varepsilon_1 + \varepsilon_2) Pr[(K_1(D') = S_1), (K_2(D') = S_2)]$
 - Use the fact that the noise distributions are independent
- Bottom line: result is $\varepsilon_1 + \varepsilon_2$ differentially private
 - Can reason about sequential composition by just "adding the ε 's"

Parallel Composition

- Sequential composition is pessimistic
 - Assumes outputs are correlated, so privacy budget is diminished
- If the inputs are disjoint, then result is $max(\varepsilon_1, \varepsilon_2)$ private
- Example:
 - Ask for count of people broken down by handedness, hair color

	Redhead	Blond	Brunette
Left-handed	23	35	56
Right-handed	215	360	493

- Each cell is a disjoint set of individuals
- So can release each cell with ε -differential privacy (parallel composition) instead of 6ε DP (sequential composition)

Exponential Mechanism

- What happens when we want to output non-numeric values?
- Exponential mechanism is most general approach
 - Captures all possible DP mechanisms
 - But ranges over all possible outputs, may not be efficient

Requirements:

- Input value x
- Set of possible outputs O
- Quality function, q, assigns "score" to possible outputs $o \in O$

q(x, o) is bigger the "better" o is for x

- Sensitivity of $q = S(q) = \max_{x,x',o} |q(x,o) - q(x',o)|$

Exponential Mechanism

- Sample output $o \in O$ with probability $Pr[K(x) = o] = exp(\varepsilon q(x,o)) / (\sum_{o' \in O} exp(\varepsilon q(x,o')))$
- Result is (2ε S(q))-DP
 - Shown by considering change in numerator and denominator under change of x is at most a factor of exp(ε S(q))
- Scalability: need to be able to draw from this distribution
- Generalizations:
 - O can be continuous, \sum becomes an integral
 - Can apply a prior distribution over outputs as P(o)
 - We assume a uniform prior for simplicity

Exponential Mechanism Example 1: Count

Suppose input is a count n, we want to output (noisy) n

- Outputs O = all integers
- q(o,n) = -|o-n|
- S(q) = 1
- Then Pr[K(n) = o] = exp(- ε |o-n|)/($\sum_{o} -\varepsilon$ |o-n|) = $\alpha^{-|o-n|} \cdot (1-\alpha)/(1-\alpha)$
- Simplifies to the Geometric mechanism!
- Similarly, if O = all reals, applying exponential mechanism results in the Laplace Mechanism
- Illustrates the claim that Exponential Mechanism captures all possible DP mechanisms

Exponential Mechanism, Example 2: Median

- Let M(X) = median of set of values in range [0,T] (e.g. median age)
- Try Laplace Mechanism: S(M) = T
 - There can be datasets X, X' where M(X) = 0, M(X') = T, |X-X'|=1
 - Consider $X = [0^n, 0, T^n], X' = [0^n, T, T^n]$
 - Noise from Laplace mechanism outweighs the true answer!
- Exponential Mechanism: set q(o,X) = | rank_x(o) |X|/2|
 - Define rank_x(o) as the number of elements in X dominated by o
 - Note, $rank_X(M(X)) = |X|/2$: median has rank half
 - S(q) = 1: adding or removing an individual changes q by at most 1
 - Then Pr[K(X) = o] = exp($\varepsilon q(o,X)$)/($\sum_{o' \in O} exp(\varepsilon q(o',X))$)
 - Problem: O could be very large, how to make efficient?

Exponential Mechanism, Example 2: Median

Observation: for many values of o, q(o, X) is the same:

- Index X in sorted order so $x_1 \le x_2 \le x_3 \le ... \le x_n$
- Then for any $x_i \le o < o' \le x_{i+1}$, $rank_X(o) = rank_X(o')$
- Hence q(o,X) = q(o',X)
- Break possible outputs into ranges:
 - $O_0 = [0, x_1] O_1 = [x_1, x_2] ... O_n = [x_n, T]$
 - Pick range O_i with probability proportional to $|O_i| \exp(\epsilon q(O,X))$
 - Pick output $o \in O_i$ uniformly from the range
 - Time cost is proportional to number of ranges n (after sorting X)
- Similar tricks make exponential mechanism practical elsewhere

Recap

- Have developed a number of building blocks for DP:
 - Geometric and Laplace mechanism for numeric functions
 - Exponential mechanism for sampling from arbitrary sets
- And "cement" to glue things together:
 - Parallel and sequential composition theorems
- With these blocks and cement, can build a lot
 - Many papers arrive from careful combination of these tools!
- Useful fact: any post-processing of DP output remains DP
 - (so long as you don't access the original data again)
 - Helps reason about privacy of data release processes

Case Study: Sparse Spatial Data

Consider location data of many individuals

- Some dense areas (towns and cities), some sparse (rural)
- Applying DP naively simply generates noise
 - lay down a fine grid, signal overwhelmed by noise
- Instead: compact regions with sufficient number of points

Private Spatial decompositions

quadtree

kd-tree

- Build: adapt existing methods to have differential privacy
- Release: a private description of data distribution (in the form of bounding boxes and noisy counts)

Building a Private kd-tree

Process to build a private kd-tree

- Input: maximum height h, minimum leaf size L, data set
- Choose dimension to split
- Get (private) median in this dimension
- Create child nodes and add noise to the counts
- Recurse until:
 - Max height is reached
 - Noisy count of this node less than L
 - Budget along the root-leaf path has used up
- The entire PSD satisfies DP by the composition property

Building PSDs – privacy budget allocation

- Data owner specifies a total budget
 ɛ reflecting the level of anonymization desired
- Budget is split between medians and counts
 - Tradeoff accuracy of division with accuracy of counts
- Budget is split across levels of the tree
 - Privacy budget used along any root-leaf path should total $\boldsymbol{\epsilon}$

Privacy budget allocation

- How to set an ε_i for each level?
 - Compute the number of nodes touched by a 'typical' query

7 Ő 5

00E

- Minimize variance of such queries
- Optimization: min $\sum_i 2^{h-i} / \epsilon_i^2$ s.t. $\sum_i \epsilon_i = \epsilon$
- Solved by $\varepsilon_i \propto (2^{(h-i)})^{1/3} \varepsilon$: more to leaves
- Total error (variance) goes as $2^{h}/\epsilon^{2}$
- Tradeoff between noise error and spatial uncertainty
 - Reducing h drops the noise error
 - But lower h increases the size of leaves, more uncertainty

Post-processing of noisy counts

- Can do additional post-processing of the noisy counts
 - To improve query accuracy and achieve consistency
- Intuition: we have count estimate for a node and for its children
 - Combine these independent estimates to get better accuracy
 - Make consistent with some true set of leaf counts
- Formulate as a linear system in n unknowns
 - Avoid explicitly solving the system
 - Expresses optimal estimate for node v in terms of estimates of ancestors and noisy counts in subtree of v
 - Use the tree-structure to solve in three passes over the tree
 - Linear time to find optimal, consistent estimates

Data Transformations

- Can think of trees as a 'data-dependent' transform of input
- Can apply other data transformations
- General idea:
 - Apply transform of data
 - Add noise in the transformed space (based on sensitivity)
 - Publish noisy coefficients, or invert transform (post-processing)
- Goal: pick a transform that preserves good properties of data
 - And which has low sensitivity, so noise does not corrupt

Wavelet Transform

Haar wavelet transform commonly used to approximate data

c0(11/4)

c1 (-5/4)

a[3]

(a)

c3

c6

a[4]

0

a[5]

c7

a[6]

0

a[7]

c2

a[1]

(1/2)

c5

a[2]

l = 1

l = 2

1 = 3

c4

a[0]

- Any 1D range is expressed using log n coefficients
- Each input point affects log n coefficients *l = 0*
- Is a linear, orthonormal transform
- Can add noise to wavelet coefficients
 - Treat input as a 1D histogram of counts
 - Bounded sensitivity: each individual affects coefficients by O(1)
 - Can transform noisy coefficients back to get noisy histogram
- Range queries are answered well in this model
 - Each range query picks up noise (variance) $O(\log^3 n / \epsilon)$
 - Directly adding noise to input would give noise $O(n / \epsilon)$

Other Transforms

Many other transforms can be applied within DP

- (Discrete) Fourier Transform: also bounded sensitivity
 - Often need only a fixed set of coefficients: further reduces S(F)
 - Used for representing data cube counts, time series
- Hierarchical Transforms: binary trees and quadtrees
- Randomized Transforms: sketches and compressed sensing

Local Sensitivity

A common fallacy: using local sensitivity instead of global

- Global sensitivity $S(F) = \max_{x,x':|x-x'|=1} |F(x)-F(x')|$
- Local sensitivity $S(F,x) = \max_{x': |x-x'|=1} |F(x)-F(x')|$
- These can be very different: local can be much smaller than global
- It is tempting (but incorrect) to calibrate noise to local sensitivity
- Bad case for local sensitivity: Median
 - Consider X = $[0^n, 0, 0, T^{n-1}]$, X' = $[0^n, 0, T^n]$, X'' = $[0^n, T, T^n]$
 - S(F,X) = 0 while S(F, X') = T
 - Scale of the noise will reveal exactly which case we are in
- Still, there has to be something better than always using global?
 - Such bad cases seem artificial, rare

Smooth Sensitivity

- Previous case was bad because local sensitivity was low, but "close" to a case where local sensitivity was high
- "Smooth sensitivity" combines sensitivity from all neighborhoods (based on parameter β)
 - SS(F,x) = max_{o \in O} LS(F,o) exp(- β |o x|)
 - Contribution of output o is decayed exponentially based on distance of o from x, |o x|
 - Can add Laplace noise scaled by SS(F,x) to obtain (variant of) DP

Smooth Sensitivity: Example

Consider the median function M over n items again

- Compute the maximum change in the median for each distance d
- LS measures when median changes from x_i to x_{i+1}
- So LS at distance d is at most $\max_{0 \le j \le d} (x_{n/2+j} x_{n/2+j-d-1})$
 - Largest gap that can be created by inserting/deleting at most d items
- Gives SS(M,x) = $\max_{0 \le d \le n} \exp(-d\beta) \max_{0 \le j \le d} (x_{n/2+j} x_{n/2+j-d-1})$
 - Can compute in time O(n²)
 - Empirically, exponential mechanism seems preferable
 - No generic process for computing smooth sensitivity

Sample-and-aggregate

Sample-and-aggregate gives a useful template

- Intuition: sampling is almost DP can't be sure who is included
- Break input into moderate number of blocks, m
- Compute desired function on each block
- Snap to some range [min, max] and aggregate (e.g. mean)
- Add Laplace noise scaled by sensitivity (max-min)

Sparse Data

- Suppose we have many (overlapping) queries, most of which have a small answer, but we don't know which
 - We are only interesting in large answers (e.g. frequent itemsets)
 - Two problems: time efficiency, and "privacy efficiency"
- Time efficiency:
 - Don't want to add noise to every single zero-valued query
 - Assume we can materialize all non-zero query answers
 - Count how many are zero
 - Compute probability of noise pushing a zero-query past threshold
 - Sample from Binomial distribution how many to "upgrade"
 - Sample noisy value conditioned on passing threshold

Sparse Data – Privacy Efficiency

- Only want to pay for c queries with that exceed threshold T
 - Assume all queries have sensitivity S
- Compute noisy threshold T' = T + Lap(2S/ε)
- For each query, add noise Lap(2Sc/ε), only output if above T'
- Result is ε-DP
 - For "suppressed" answers, probability of seeing same output is about the same as if T' was a little higher on neighboring input
 - For released answers, DP follows from Laplace mechanism
- Result is reasonably accurate: with high probability,
 - All suppressed answers are smaller than T + α
 - All released answers have error at most α

for parameter α (c,1/ ϵ , S), and at most c query answers > T - α

Multiplicative weights

The idea of "multiplicative weights" widely used in optimization

- Up-weight 'good' answers, down-weight 'poor' answers
- Applied to output of DP mechanism

Set-up:

- (Private) input, represented as vector D with n entries
- Q, set of queries over x (matrix)
- T, bound on number of iterations
- Output: ε -DP vector A so that $Q(A) \approx Q(D)$

Multiplicative Weights Algorithm

- Initialize vector A₀ to assign uniform weight for each value
- For i=1 to T:
 - Exponential Mechanism ($\epsilon/2T$) to sample j prop. to $|Q_i(A_i) Q_i(D)|$
 - Try to find query with large error
 - Laplace Mechanism to estimate $\Delta = (Q_i(A) Q_i(D)) + Lap(2T/\epsilon)$
 - Error in the selected query
 - Set $A_i = A_{i-1}$. exp($\Delta Q_i(D)/2n$), normalize so that A_i is a distribution
 - (Noisily) reward good answers, penalize poor answers
- Output A = average_i nA_i
 - Privacy follows via sequential composition of EM and LM steps
 - Accuracy (should) improve in each iteration, up to log iterations

Other topics

- Huge amount of work in DP across theory, security, DB...
- Many topics not touched on in this tutorial:
 - Connections to game theory and auction design
 - Mining primitives: regression, clustering, frequent itemsets
 - Efforts in programming languages and systems to support DP
 - Variant definitions: (ϵ , δ)-DP, other privacy/adversary models
 - Lower bounds for privacy (what is not possible)
 - Applications to graph data (social networks), mobility data etc.
 - Privacy over data streams: pan-privacy and continual observation

Concluding Remarks

- Differential privacy can be applied effectively for data release
- Care is still needed to ensure that release is allowable
 - Can't just apply DP and forget it: must analyze whether data release provides sufficient privacy for data subjects
- Many open problems remain:
 - Transition these techniques to tools for data release
 - Want data in same form as input: private synthetic data?
 - Allow joining anonymized data sets accurately
 - Obtain alternate (workable) privacy definitions

Thank you!

References – Basic Building Blocks

Differential privacy, Laplace Mechanism and Sensitivity:

- Calibrating Noise to Sensitivity in Private Data Analysis. Cynthia Dwork, Frank McSherry, Kobbi Nissim, Adam Smith. Theory of Cryptography Conference (TCC), 2006.
- Differential Privacy. Cynthia Dwork, ICALP 2006
- Geometric Mechanism
 - Universally utility-maximizing privacy mechanisms. Arpita Ghosh, Tim Roughgarden, Mukund Sundararajan. STOC 2009
- Sequential and Parallel Composition, Median Example
 - Privacy integrated queries: an extensible platform for privacypreserving data analysis. Frank McSherry. SIGMOD 2009.
- Exponential Mechanism

40

 Mechanism Design via Differential Privacy. Frank McSherry and Kunal Talwar. FOCS, 2007

References – Applications & Transforms

Spatial Data Application

 Differentially private spatial decompositions. Graham Cormode, Magda Procopiuc, Entong Shen, Divesh Srivastava, and Ting Yu. In International Conference on Data Engineering (ICDE), 2012

Data Transforms

- Differential privacy via wavelet transforms. Xiaokui Xiao, Guozhang Wang, Johannes Gehrke, ICDE 2010
- Privacy, accuracy, and consistency too: a holistic solution to contingency table release. Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank Mcsherry, Kunal Talwar. PODS 2007
- Differentially Private Aggregation of Distributed Time-Series with Transformation and Encryption. Vibhor Rastogi and Suman Nath, SIGMOD 2010

References – Advanced Mechanisms

Smooth Sensitivity, Sample and Aggregate

- Smooth Sensitivity and Sampling in Private Data Analysis.
 Kobbi Nissim, Sofya Raskhodnikova and Adam Smith. STOC 07
- GUPT: Privacy Preserving Data Analysis Made Easy. Prashanth Mohan,
 Abhradeep Thakurta, Elaine Shi, Dawn Song, David Culler. SIGMOD 2012

Sparse Data Processing

- Differentially Private Summaries for Sparse Data. Graham Cormode, Magda Procopiuc, Divesh Srivastava, and Thanh Tran. ICDT 2012
- A Multiplicative Weights Mechanism for Privacy Preserving Data Analysis.
 Moritz Hardt and Guy Rothblum. FOCS 2010.

Multiplicative Weights

A simple and practical algorithm for differentially private data release.
 Moritz Hardt, Katrina Ligett, Frank McSherry. NIPS 2012