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Challenge of Uncertain Data

m Many applications generate data which is uncertain:
— Quality of Record Linkages
— Confidences of extracted rules
— Noisy Sensor/RFID readings

m |eads us to study probabilistic data management

m /uple level uncertainty:. each tuple is uncertain,
iIndependent

m Leads to exponentially many possible worlds
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Simple Model

m We adopt simplest model (Dalvi and Suciu 2004):
— A set of probabilistic tuples (t, p)
— A pair of a value, te[1...M] and a probability p
— With probability p, t is in relation, (1-p) it is not
— More generally, can have a (compact) PDF

m Example: S = ((x, ¥2), {y, 1/3), (y, Va))

— Encodes 6 “possible worlds” ground relations:

Grnd(S) = {0, (x), (), (X, ¥), (¥, ¥), (X, ¥, ¥)}
— Can compute probabilities of each possible relation:
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Probabilistic Stream Computations

m |[n general, too expensive to track all possible worlds
m Probabilistic streams: too expensive to track all tuples!
- E.g. stream of sensor readings
m Want to compute aggregate functions over prob. streams
— Given function F, find expected value:
E(F(S)) = Zgeamas) PrG] F(G)
— Also compute variance to quantify reliability:
Var(F(S)) = E(F%(S)) — E(F(S))
m Focus on computing Frequency moments (F,, F, F»),
much studied in deterministic streams

m Measure space and time cost (one pass over stream)
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Sampling Approach

m Efficient streaming algorithms are known for many
deterministic streaming computations
m Natural idea: sample several possible ground streams,
compute F on each, and compute E and Var of samples.
— Can work OK for E: sampling O(e? Var[F(S)]/E?[F(S)])
gives relative error e.

— Depends on the stream and aggregate properties, but for
many cases, the ratio Var/E? is small.

— Bounds for estimating Var are much worse, need many
more samples
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Warm up case: F,

m Some functions are easy to compute exactly, in
streaming model with small cost.

m F,isjust count — E(F,(S)) is expected length of stream
m Easyto see E(F,(S)) = 2, p; (sum of Bernoulli variables)
m By summation of variances, Var(F,(S)) = 2. p.(1-p;)

m Can use these observations to estimate quantiles and
heavy hitters with additive error € in space O(1/¢)
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Fo: Count Distinct

m E[F,(S)] is the expected number of distinct tuples seen

— Easy to track in (high) space O(M), by keeping information
for each possible tuple value t.

m M is often very large, want solution with cost O(log M)

— Make use of the Flajolet-Martin (FM) sketch, which solves
F, for deterministic streams
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FM Sketch Summary

m Estimates number of distinct inputs (count distinct)
m Uses hash function mapping input items to i with prob 2
_ i.e. Pr[h(x) = 1] = %, Pr[h(x) = 2] = Y4, Pr[h(x)=3] = 1/8 ...

— Easy to construct h() from a uniform hash function by
counting trailing zeros

m FM Sketch = bitmap array of L = log M bits
— Initialize bitmap to all Os
— For each incoming value x, set FM[h(x)] =
1

1

6 5 4 3 2

X=5 — h(x)=3 olo 011‘0 0
\ FM BITMAP
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Probabilistic FM sketch (pFM)

m In FM sketch, 1 indicates that some item hashed there

m [nterpret this as a probability: when t. arrives, update
PFM[h(t)] < p; + (1-p;)PFM[h(t;)]

m Build estimator D for E[F,(S)] as
D =2, 21 pFM[j] [ (1-pFM[K])

— uses (expected) location of most significant 1 bit in array

m Can show that D is a constant factor approx of E[F,(S)]
with constant probability
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Improved Estimator

m Can build an (g, o) estimator for E[F,(S)]: finds a value d
such that d = (1z€) E[F,(S)] with probability at least 1-0

— Using same pFM sketch as before

m Use constant factor approx to find a sampling level
K* = log, E[Fy(S)] + O(1)
— Probe multiple repetitions of sketch at level k* to build a
better estimator (details in paper)

m Can (g,0) approximate E[F,(S)] using O(e? log &) pFMs
— Similar to cost for deterministic streams
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Estimating Var(F,)

m Also want to estimate Var[F,(S)], the variance of F,
— Reduce to computing E[F,(S)] over modified streams

m Given S = ((t, py), set S, = ((t;, 2p, — p&))
— Can prove that Var[F,(S)] = E[F4(S,)] = E[F4(S)]
— Since E[Fy(S,)] < 2E[F,(S)], error is at most 3eE[F,(S)]

m Can estimate Var[F,(S)] with additive error eE[F,(S)]
w/prob at least 1-8 using O(e? log &') pFM sketches
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F,: Self-join size

m Let f, be the frequency of item t; F, = X, 2, self-join size.
— On prob. streams, E[F,(S)] is expected self-join size

m Let X, be random variable for occurrences of t.
— E[X{] = 24—t pies P @nd Var[X\] = 24 _t pives Pi(1-P)

m Since E[X?2] = Var[X] + EZ[X], we have:

- E[Fo(S)] = 24 (X i =t piyes PiT-P) + (2 i =, piye s P)?)
— First term can be computed exactly
— Second term is a L,2 norm of a deterministic stream of p.’s

m Use AMS sketch on p's to (€,0) approximate E[F,(S)] in
space O(e?log o)
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Var[F,(S)], variance of self-join size

13

We used the fact that Var[X] = E[X?] - E?[X] and that
Var[X + Y] = Var[X] + Var[Y] to find E[F,(S)]

Can use similar cumulants to find higher moments:
ia[X] = E[(X - E(X))°]  1,[X] = E[(X-E(X))*] — 3Var[X]°
and k[X + Y] = k[X] + k[Y] for all |

Can write Var[X?] in terms of cumulants:
Var[X?] = «,[X] + 415[X]i [ X]+2x,2[X] + 4ic,[X]ic,2[X]

For Bernoulli random variable B with parameter p:
K[B]=p, 1[B]=p-p?, 15[B] =(1-2p)(p-p®), k,[B]=(1-6p+6p?)(p-p°)
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Var|[F,(S)] resulis
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Consequently, can rewrite Var[F,(S)] in terms of
deterministic stream functions of the p;'s

Estimate in small space by using AMS sketches to
estimate appropriate vector dot-products

Can find an estimate of Var[F,(S)] with error at most ¢
E[F,(S)]¥? with prob. at least 1-0 in space O(e2 log &)

Similar cumulant-based techniques allow estimation of
join size, and higher moments
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Experimental Study

m Implemented our algorithms for F, and F,, both E and
Var

m Used real data from MYSTIQ project based on linkages
between Amazon and IMDB data

m Synthetic data with zipfian distribution on tuples, uniform
on probabilities
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F, Results

Accuracy of Var[F(S)] estimation on Synthetic Data
a0

Accuracy of E[F,(S)] estimation on IMDB Data
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m Sampling possible worlds for non-pathological streams
does well for E[F,(S)], is terrible for V[F,(S)] (off chart)

m pFM sketches are much faster (by a factor of about 30)
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F, Resulis

Accuracy of E[F,(5)] estimation on Synthetic Data Accuracy of Var[F,(S)] estimation on Synthetic Dat:
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80KB space

m Sampling slightly better on synthetic streams for
expectation, still way off for variance

m Both methods fast: about 1 second to process 10° tuples
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Closing Remarks
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Fundamental aggregates such as Frequency Moments
can be approximated accurately on probabilistic streams

Requires careful analysis and proof to give guarantees
Need space and time similar to deterministic streams

Results scale pretty well experimentally

— e.9.10% relative error in 80KB space

Many other problems to study in this domain
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