'6Robust" Lower Bounds

for Communication and Stream Computation

> Amit Chakrabarti Dartmouth College Graham Cormode AT\&T Labs Andrew McGregor UC San Diego

Communication Complexity

Communication Complexity

- Goal: Evaluate $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ when input is split among P players:

How much communication is required to evaluate f ?
Consider randomized, blackboard, one-way, multi-round, ...

Communication Complexity

- Goal: Evaluate $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ when input is split among P players:

How much communication is required to evaluate f ?
Consider randomized, blackboard, one-way, multi-round, ...

Communication Complexity

- Goal: Evaluate $f\left(x_{1}, \ldots, x_{n}\right)$ when input is split among P players:

How much communication is required to evaluate f ?
Consider randomized, blackboard, one-way, multi-round, ...

- How important is the split?

Is f hard for many splits or only hard for a few bad splits?
Previous work on worst and best partitions.
[Aho, Ullman, Yannakakis '83] [Papadimitriou, Sipser '84]

Communication Complexity

- Goal: Evaluate $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ when input is split among P players:

How much communication is required to evaluate f ?
Consider randomized, blackboard, one-way, multi-round, ...

- How important is the split?

Is f hard for many splits or only hard for a few bad splits?
Previous work on worst and best partitions.
[Aho, Ullman, Yannakakis '83] [Papadimitriou, Sipser '84]

- Consider random partitions:

Define error probability over coin flips and random split.

Stream Computation

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85]
[Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

- Goal: Evaluate $f\left(x_{1}, \ldots, x_{n}\right)$ given sequential access:

$$
\begin{aligned}
& \downarrow \\
& x_{1} x_{2} x_{3} x_{4} x_{5} \ldots \quad \ldots x_{n}
\end{aligned}
$$

Stream Computation

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85]
[Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

- Goal: Evaluate $f\left(x_{1}, \ldots, x_{n}\right)$ given sequential access:

$$
\begin{array}{lr}
& \begin{array}{l}
\downarrow \\
x_{2}
\end{array} x_{3} x_{4} x_{5} \ldots \\
\ldots & x_{n}
\end{array}
$$

Stream Computation

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85]
[Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

- Goal: Evaluate $f\left(x_{1}, \ldots, x_{n}\right)$ given sequential access:

$$
x_{1} x_{2} x_{3} x_{4} x_{5} \ldots \quad \ldots x_{n}
$$

How much working memory is required to evaluate f ?
Consider randomized, approximate, multi-pass, etc.

Stream Computation

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85]
[Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

- Goal: Evaluate $f\left(\mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ given sequential access:

$$
x_{1} x_{2} x_{3} x_{4} x_{5} \ldots \quad \begin{aligned}
& \downarrow \\
& \ldots
\end{aligned}
$$

How much working memory is required to evaluate f ?
Consider randomized, approximate, multi-pass, etc.

- Random-order streams: Assume f is order-invariant:

Upper Bounds: e.g., stream of i.i.d. samples.
Lower Bounds: is a "hard" problem hard in practice?
[Munro, Paterson '78] [Demaine, López-Ortiz, Munro ’02]
[Guha, McGregor '06, '07a, ’07b] [Chakrabarti, Jayram, Patrascu ’08]

Stream Computation

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85]
[Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

- Goal: Evaluate $f\left(x_{1}, \ldots, x_{n}\right)$ given sequential access:

$$
\begin{array}{lr}
& \downarrow \\
x_{1} x_{2} x_{3} x_{4} x_{5} \ldots & \ldots x_{n}
\end{array}
$$

How much working memory is required to evaluate f ?
Consider randomized, approximate, multi-pass, etc.

- Random-order streams: Assume f is order-invariant:

Upper Bounds: e.g., stream of i.i.d. samples.
Lower Bounds: is a "hard" problem hard in practice?
[Munro, Paterson '78] [Demaine, López-Ortiz, Munro '02]
[Guha, McGregor '06, '07a, ’07b] [Chakrabarti, Jayram, Patrascu '08]

- Random-partition-CC bounds give random-order bounds

Results

- t-party Set-Disjointess: Any protocol for $\Omega\left(t^{2}\right)$-player randompartition requires $\Omega(n / t)$ bits communication.
\therefore 2-approx. for $k^{\text {th }}$ freq. moments requires $\Omega\left(\mathrm{n}^{1-3 / k}\right)$ space.
- Median: Any p-round protocol for p-player randompartition requires $\Omega\left(m^{f(p)}\right)$ where $f(p)=1 / 3 p$
\therefore Polylog(m)-space algorithm requires Ω ($\log \log m)$ passes.
- Gap-Hamming: Any one-way protocol for 2-player randompartition requires $\Omega(n)$ bits communicated.
$\therefore \quad(I+\varepsilon)$-approx. for F_{0} or entropy requires $\Omega\left(\varepsilon^{-2}\right)$ space.
- Index: Any one-way protocol for 2-player random-partition (with duplicates) requires $\Omega(n)$ bits communicated.
\therefore Connectivity of a graph $G=(V, E)$ requires $\Omega(|V|)$ space.

The Challenge...

The Challenge...

- Naive reduction from fixed-partition-CC:
I. Players determine random partition, send necessary data.

2. Simulate protocol on random partition.

The Challenge...

- Naive reduction from fixed-partition-CC:
I. Players determine random partition, send necessary data.

2. Simulate protocol on random partition.

The Challenge...

- Naive reduction from fixed-partition-CC:
I. Players determine random partition, send necessary data.

2. Simulate protocol on random partition.

- Problem: Seems to require too much communication.

The Challenge...

- Naive reduction from fixed-partition-CC:
I. Players determine random partition, send necessary data.

2. Simulate protocol on random partition.

- Problem: Seems to require too much communication.
- Consider random input and public coins:

Issue \#I: Need independence of input and partition.
Issue \#2: Generalize information statistics techniques.

a) Disjointness b) Selection

a) Disjointness

 b) Selection
Multi-Party Set-Disjointness

- Instance: $t \times n$ matrix,

$$
X=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

and define, $\operatorname{DISJ}_{n, t}=\bigvee_{i} \operatorname{AND}_{t}\left(x_{1, i}, \ldots, x_{t, i}\right)$

Multi-Party Set-Disjointness

- Instance: $t \times n$ matrix,

$$
X=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

and define, $\operatorname{DISJ}_{n, t}=\bigvee_{i} \operatorname{AND}_{t}\left(x_{1, i}, \ldots, x_{t, i}\right)$

- Unique intersection: Each column has weight 0 , I, or t and at most one column has weight t.

Multi-Party Set-Disjointness

- Instance: $t \times n$ matrix,

$$
X=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

and define, $\operatorname{DISJ}_{n, t}=\bigvee_{i} \operatorname{AND}_{t}\left(x_{1, i}, \ldots, x_{t, i}\right)$

- Unique intersection: Each column has weight 0 , I, or t and at most one column has weight t.
- Thm: $\Omega(n / t)$ bound if t-players each get a row.
[Kalyanasundaram, Schnitger '92] [Razborov '92]
[Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

Multi-Party Set-Disjointness

- Instance: $t \times n$ matrix,

$$
X=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

and define, $\operatorname{DISJ}_{n, t}=\bigvee_{i} \operatorname{AND}_{t}\left(x_{1, i}, \ldots, x_{t, i}\right)$

- Unique intersection: Each column has weight 0, I, or t and at most one column has weight t.
- Thm: $\Omega(n / t)$ bound if t-players each get a row.
[Kalyanasundaram, Schnitger '92] [Razborov '92]
[Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]
- Thm: $\Omega(n / t)$ bound for random partition for $\Omega\left(t^{2}\right)$ players.

Generalize Information Statistics Approach...

[Chakrabarti, Shi,Wirth, Yao ’OI] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

Generalize Information Statistics Approach...

[Chakrabarti, Shi,Wirth, Yao ’OI] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

- $\Pi(X)$ is transcript of δ-error protocol Π on random input $X \sim \mu$.

Generalize Information Statistics Approach...

[Chakrabarti, Shi,Wirth, Yao ’OI] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

- $\Pi(X)$ is transcript of δ-error protocol Π on random input $X \sim \mu$.
- Information Cost: $\operatorname{icost(\Pi)=I(X:\Pi (X))}$

Lower bound on the length of the protocol Amenable to direct-sum results...

Generalize Information Statistics Approach...

[Chakrabarti, Shi,Wirth, Yao ’OI] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

- $\Pi(X)$ is transcript of δ-error protocol Π on random input $X \sim \mu$.
- Information Cost: $\operatorname{icost}(\Pi)=I(X: \Pi(X))$

Lower bound on the length of the protocol Amenable to direct-sum results...

```
icost(П)\geq\mp@subsup{\sum}{j}{}l(\mp@subsup{X}{}{j}:\Pi(X))
    where }\mp@subsup{X}{}{j}\mathrm{ is }\mp@subsup{j}{}{\mathrm{ th }}\mathrm{ column
        of matrix }
    Step 1:
```


Generalize Information Statistics Approach...

[Chakrabarti, Shi, Wirth, Yao '01] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

- $\Pi(X)$ is transcript of δ-error protocol Π on random input $X \sim \mu$.
- Information Cost: $\operatorname{icost}(\Pi)=I(X: \Pi(X))$

Lower bound on the length of the protocol Amenable to direct-sum results...

```
icost(\Pi)\geq\mp@subsup{\sum}{j}{}l(\mp@subsup{X}{}{j}:\Pi(X))}\quadI(\mp@subsup{X}{}{j}:\Pi(X))\geqi\operatorname{cost}(\mp@subsup{\Pi}{}{\prime}
    where }\mp@subsup{X}{}{j}\mathrm{ is }\mp@subsup{j}{}{\mathrm{ th }}\mathrm{ column
        of matrix }
    Step I:
    Step 2:
```


Generalize Information Statistics Approach...

[Chakrabarti, Shi, Wirth, Yao ’0I] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

- $\Pi(X)$ is transcript of δ-error protocol Π on random input $X \sim \mu$.
- \quad Information Cost: $\operatorname{icost}(\Pi)=I(X: \Pi(X))$

Lower bound on the length of the protocol
Amenable to direct-sum results...

Generalize Information Statistics Approach...

[Chakrabarti, Shi,Wirth, Yao ’OI] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

- $\Pi(X)$ is transcript of δ-error protocol Π on random input $X \sim \mu$.
- Information Cost: $\operatorname{icost}(\Pi)=I(X: \Pi(X))$

Lower bound on the length of the protocol
Amenable to direct-sum results...

- Necessary Generalization:

Step I: Condition "icost" on public coins.
Step 2: Error of Π ' is best $\delta+\operatorname{Birthday}(t, p)$ error protocol.
Step 3: Generalize result for public-coin protocols.

Frequency Moments

Frequency Moments

- Define: $F_{k}(S)=\sum_{i}(\text { freq. of } i)^{k}$

Frequency Moments

- Define: $F_{k}(S)=\sum_{i}(\text { freq. of } \mathrm{i})^{k}$
- Reduction from set-disjointness:
[Alon, Matias, Szegedy '99]

$$
\begin{aligned}
& S=\left\{i: x_{i j}=1\right\} \\
& F_{k}(S) \geq t^{k} \text { if } \operatorname{DISJ}_{n, t}(X)=1 \\
& F_{k}(S) \leq n \text { if } \operatorname{DISJ}_{n, t}(X)=0
\end{aligned}
$$

Frequency Moments

- Define: $F_{k}(S)=\sum_{i}(\text { freq. of } i)^{k}$
- Reduction from set-disjointness:
[Alon, Matias, Szegedy '99]

$$
\begin{gathered}
S=\left\{i: x_{i j}=1\right\} \\
F_{k}(S) \geq t^{k} \text { if } \operatorname{DIS}_{n, t}(X)=1 \\
F_{k}(S) \leq n \text { if } \operatorname{DISJ}_{n, t}(X)=0
\end{gathered}
$$

- Thm: $\Omega\left(n^{1-3 / k}\right)$ space bound for random order streams.
- Proof: Set $t^{k}=2 n$ to prove $\Omega\left(n^{1-1 / k}\right)$ total communication Per-message communication is $\Omega\left(n^{1-1 / k / p)}=\Omega\left(n^{1-3 / k}\right)\right.$

Frequency Moments

- Define: $F_{k}(S)=\sum_{i}(\text { freq. of } i)^{k}$
- Reduction from set-disjointness:
[Alon, Matias, Szegedy '99]

$$
\begin{aligned}
& S=\left\{i: x_{i j}=1\right\} \\
& F_{k}(S) \geq t^{k} \text { if } \operatorname{DIS}_{n, t}(X)=1 \\
& F_{k}(S) \leq n \text { if } \operatorname{DISJ}_{n, t}(X)=0
\end{aligned}
$$

- Thm: $\Omega\left(n^{1-3 / k}\right)$ space bound for random order streams.
- Proof: Set $t^{k}=2 n$ to prove $\Omega\left(n^{1-1 / k}\right)$ total communication Per-message communication is $\Omega\left(n^{1-1 / k / p}\right)=\Omega\left(n^{1-3 / k}\right)$
- Open Problem: $\Omega\left(n^{1-2 / k}\right)$ bound for random order?

a) Disjointness

 b) SelectionSelection in Streams

Selection in Streams

- Find median of stream of m values in polylog (m) space.

Selection in Streams

- Find median of stream of m values in polylog (m) space.
- Thm: For adversarial-order stream, $\Theta(\lg m / \lg \lg m)$ pass [Munro, Paterson '78] [Guha, McGregor '07a]

Selection in Streams

- Find median of stream of m values in polylog(m) space.
- Thm: For adversarial-order stream, $\Theta(\lg m / \lg \lg m)$ pass [Munro, Paterson '78] [Guha, McGregor '07a]
- Thm: For random-order stream, $\Theta(\lg \lg m)$ pass
[Guha, McGregor '06] [Chakrabarti, Jayram, Patrascu '08]

Selection in Streams

- Find median of stream of m values in polylog (m) space.
- Thm: For adversarial-order stream, $\Theta(\lg m / \lg \lg m)$ pass [Munro, Paterson '78] [Guha, McGregor '07a]
- Thm: For random-order stream, $\Theta(\lg \lg m)$ pass [Guha, McGregor '06] [Chakrabarti, Jayram, Patrascu '08]
- Our result: Using random-partition-CC techniques we get simpler and tighter pass/space trade-offs...

Tree Pointer Jumping (TPJ)...

- Instance: Function on nodes of $(p+1)$-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to $\{0, I\}$
- Goal: Compute $f\left(f\left(\ldots f\left(v_{\text {root }}\right) \ldots ..\right)\right)$.
- Thm: With p-players, if $i{ }^{\text {th }}$ player knows $f(v)$ when level $(v)=i$: Any p-round protocol requires $\Omega(t)$ communication.

Tree Pointer Jumping (TPJ)...

- Instance: Function on nodes of $(p+1)$-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to $\{0, I\}$
- Goal: Compute $f\left(f\left(\ldots f\left(v_{\text {root }}\right) \ldots ..\right)\right)$.
- Thm: With p-players, if $i{ }^{\text {th }}$ player knows $f(v)$ when level $(v)=i$: Any p-round protocol requires $\Omega(t)$ communication.

Tree Pointer Jumping (TPJ)...

- Instance: Function on nodes of $(p+1)$-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to $\{0, I\}$
- Goal: Compute $f\left(f\left(\ldots f\left(v_{\text {root }}\right) \ldots ..\right)\right)$.

Tree Pointer Jumping (TPJ)...

- Instance: Function on nodes of $(p+1)$-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to $\{0, I\}$
- Goal: Compute $f\left(f\left(\ldots f\left(v_{\text {root }}\right) \ldots ..\right)\right)$.

Tree Pointer Jumping (TPJ)...

- Instance: Function on nodes of $(p+1)$-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to $\{0, I\}$
- Goal: Compute $f\left(f\left(\ldots f\left(v_{\text {root }}\right) \ldots ..\right)\right)$.

Tree Pointer Jumping (TPJ)...

- Instance: Function on nodes of $(p+1)$-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to $\{0, I\}$
- Goal: Compute $f\left(f\left(\ldots f\left(v_{\text {root }}\right) \ldots ..\right)\right)$.
- Thm: With p-players, if $i{ }^{\text {th }}$ player knows $f(v)$ when level $(v)=i$: Any p-round protocol requires $\Omega(t)$ communication.

Reduction from TPJ to Median...

Reduction from TPJ to Median...

- With each node v associate two values $\alpha(v)<\beta(v)$ such that $\alpha(v)<\alpha(u)<\beta(u)<\beta(v)$ for any descendent u of v.

Reduction from TPJ to Median...

- With each node v associate two values $\alpha(v)<\beta(v)$ such that $\alpha(v)<\alpha(u)<\beta(u)<\beta(v)$ for any descendent u of v.

Reduction from TPJ to Median...

- With each node v associate two values $\alpha(v)<\beta(v)$ such that $\alpha(v)<\alpha(u)<\beta(u)<\beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

Reduction from TPJ to Median...

- With each node v associate two values $\alpha(v)<\beta(v)$ such that $\alpha(v)<\alpha(u)<\beta(u)<\beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

Reduction from TPJ to Median...

- With each node v associate two values $\alpha(v)<\beta(v)$ such that $\alpha(v)<\alpha(u)<\beta(u)<\beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

Reduction from TPJ to Median...

- With each node v associate two values $\alpha(v)<\beta(v)$ such that $\alpha(v)<\alpha(u)<\beta(u)<\beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

Reduction from TPJ to Median...

- With each node v associate two values $\alpha(v)<\beta(v)$ such that $\alpha(v)<\alpha(u)<\beta(u)<\beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

Reduction from TPJ to Median...

- With each node v associate two values $\alpha(v)<\beta(v)$ such that $\alpha(v)<\alpha(u)<\beta(u)<\beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

Reduction from TPJ to Median...

- With each node v associate two values $\alpha(v)<\beta(v)$ such that $\alpha(v)<\alpha(u)<\beta(u)<\beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.
- Relationship between t and \# copies determines bound.

Simulating Random-Partition Protocol...

Simulating Random-Partition Protocol...

- Consider node v where $f(v)$ is known to Bob.

Simulating Random-Partition Protocol...

- Consider node v where $f(v)$ is known to Bob.

Simulating Random-Partition Protocol...

$$
\alpha \alpha \alpha \beta \beta \beta \beta
$$

- Consider node v where $f(v)$ is known to Bob.
- Creating Instance of Random-Partition Median Finding:
I) Using public coin, players determine partition of tokens and set half to α and half to β.

Simulating Random-Partition Protocol...

- Consider node v where $f(v)$ is known to Bob.
- Creating Instance of Random-Partition Median Finding:
I) Using public coin, players determine partition of tokens and set half to α and half to β.

Simulating Random-Partition Protocol...

$\beta \alpha \beta$

- Consider node v where $f(v)$ is known to Bob.
- Creating Instance of Random-Partition Median Finding:
I) Using public coin, players determine partition of tokens and set half to α and half to β.

Simulating Random-Partition Protocol...

$\beta \alpha \beta$

- Consider node v where $f(v)$ is known to Bob.
- Creating Instance of Random-Partition Median Finding:
I) Using public coin, players determine partition of tokens and set half to α and half to β.

2) Bob "fixes" balance of tokens under his control.

Simulating Random-Partition Protocol...

$\beta \alpha \beta$

- Consider node v where $f(v)$ is known to Bob.
- Creating Instance of Random-Partition Median Finding:
I) Using public coin, players determine partition of tokens and set half to α and half to β.

2) Bob "fixes" balance of tokens under his control.

Simulating Random-Partition Protocol...

$\beta \alpha \beta$

- Consider node v where $f(v)$ is known to Bob.
- Creating Instance of Random-Partition Median Finding:
I) Using public coin, players determine partition of tokens and set half to α and half to β.

2) Bob "fixes" balance of tokens under his control.

- Thm: Partition looks random if total number of tokens is greater than (max bias) $)^{2}$. Hence, $m=\exp \left(2^{p} \lg t\right)$.

Summary

Introduced notion of Robust Lower Bounds
Tight communication bounds for disjointness, indexing, gap-hamming, and improved selection bound.

Data streams bounds including frequency moments, connectivity, entropy, Fo, quantile estimation, ...

Many open problems... Thanks!

"Step 2" Simulation...

- Need protocol for fixed-partition AND $_{\mathrm{t}}$ using protocol for random-partition DISJn.t.
- Simulate Π (for disjointness) to solve $A N D_{t}$
a) Using public coin, create matrix X with $j^{\text {th }}$ column X^{j}
b) Using public coin, partition X between p virtual players
c) Run Π : player i simulates virtual player with $i^{\text {th }}$ bit of X^{j} (Give up if a virtual player receives two bits from X^{j})
- Failure probability: $\delta+\operatorname{Birthday}(t, p)$.

"Step 2" Simulation...

- Need protocol for fixed-partition AND $_{\mathrm{t}}$ using protocol for random-partition DISJn.t.
- Simulate Π (for disjointness) to solve $A N D_{t}$
a) Using public coin, create matrix X with $j^{\text {th }}$ column X^{j}
b) Using public coin, partition X between p virtual players
c) Run Π : player i simulates virtual player with $i^{\text {th }}$ bit of X^{j} (Give up if a virtual player receives two bits from X^{j})
- Failure probability: $\delta+\operatorname{Birthday}(t, p)$.

"Step 2" Simulation...

- Need protocol for fixed-partition $\mathrm{AND}_{\mathrm{t}}$ using protocol for random-partition DIS $\mathrm{n}_{\text {n. }}$.
- Simulate Π (for disjointness) to solve $A N D_{t}$
a) Using public coin, create matrix X with $j^{\text {th }}$ column X^{j}
b) Using public coin, partition X between p virtual players
c) Run Π : player i simulates virtual player with $i^{\text {th }}$ bit of X^{j} (Give up if a virtual player receives two bits from X^{j})

"Step 2" Simulation...

- Need protocol for fixed-partition $\mathrm{AND}_{\mathrm{t}}$ using protocol for random-partition DIS $\mathrm{n}_{\text {n. }}$.
- Simulate Π (for disjointness) to solve $A N D_{t}$:
a) Using public coin, create matrix X with $j^{\text {th }}$ column X^{j}
b) Using public coin, partition X between p virtual players
c) Run Π : player i simulates virtual player with $i^{\text {th }}$ bit of X^{j}
(Give up if a virtual player receives two bits from X^{j})

$$
\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \longrightarrow\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \longrightarrow\left\{\left(\begin{array}{lll}
0 & & \\
& 0 & 0 \\
& 1 &
\end{array}\right),\left(\begin{array}{llll}
0 & & 0 & 1 \\
0 & 1 & & \\
& & &
\end{array}\right),\left(\begin{array}{lll}
& & \\
& & 0
\end{array} \quad 0\right)\right\}
$$

- Failure probability: $\delta+\operatorname{Birthday}(t, p)$.

