"Robust" Lower Bounds

for Communication and Stream Computation

Amit Chakrabarti Dartmouth College **Graham Cormode** AT&T Labs Andrew McGregor UC San Diego

• Goal: Evaluate $f(x_1, ..., x_n)$ when input is split among p players:

X|| ... X20

How much communication is required to evaluate f? Consider randomized, blackboard, one-way, multi-round, ...

• Goal: Evaluate $f(x_1, ..., x_n)$ when input is split among p players:

How much communication is required to evaluate f? Consider randomized, blackboard, one-way, multi-round, ...

• Goal: Evaluate $f(x_1, ..., x_n)$ when input is split among p players:

How much communication is required to evaluate f? Consider randomized, blackboard, one-way, multi-round, ...

• How important is the split?

Is f hard for many splits or only hard for a few bad splits? Previous work on worst and best partitions.

[Aho, Ullman, Yannakakis '83] [Papadimitriou, Sipser '84]

• Goal: Evaluate $f(x_1, ..., x_n)$ when input is split among p players:

How much communication is required to evaluate f? Consider randomized, blackboard, one-way, multi-round, ...

• How important is the split?

Is f hard for many splits or only hard for a few bad splits? Previous work on worst and best partitions.

[Aho, Ullman, Yannakakis '83] [Papadimitriou, Sipser '84]

Consider random partitions:

Define error probability over coin flips and random split.

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85] [Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

• Goal: Evaluate $f(x_1, ..., x_n)$ given sequential access:

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85] [Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

• Goal: Evaluate $f(x_1, ..., x_n)$ given sequential access:

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85] [Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

• Goal: Evaluate $f(x_1, ..., x_n)$ given sequential access:

How much working memory is required to evaluate f? Consider randomized, approximate, multi-pass, etc.

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85] [Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

• Goal: Evaluate $f(x_1, ..., x_n)$ given sequential access:

How much working memory is required to evaluate f? Consider randomized, approximate, multi-pass, etc.

Random-order streams: Assume f is order-invariant:

Upper Bounds: e.g., stream of i.i.d. samples.

Lower Bounds: is a "hard" problem hard in practice?

[Munro, Paterson '78] [Demaine, López-Ortiz, Munro '02] [Guha, McGregor '06, '07a, '07b] [Chakrabarti, Jayram, Patrascu '08]

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85] [Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

• Goal: Evaluate $f(x_1, ..., x_n)$ given sequential access:

How much working memory is required to evaluate f? Consider randomized, approximate, multi-pass, etc.

<u>Random-order streams:</u> Assume f is order-invariant:

Upper Bounds: e.g., stream of i.i.d. samples.

Lower Bounds: is a "hard" problem hard in practice?

[Munro, Paterson '78] [Demaine, López-Ortiz, Munro '02] [Guha, McGregor '06, '07a, '07b] [Chakrabarti, Jayram, Patrascu '08]

Random-partition-CC bounds give random-order bounds

Results

- <u>t-party Set-Disjointess</u>: Any protocol for $\Omega(t^2)$ -player random-partition requires $\Omega(n/t)$ bits communication.
 - \therefore 2-approx. for k^{th} freq. moments requires $\Omega(n^{1-3/k})$ space.
- Median: Any p-round protocol for p-player random-partition requires $\Omega(m^{f(p)})$ where $f(p)=1/3^p$
 - \therefore Polylog(m)-space algorithm requires $\Omega(\log \log m)$ passes.
- <u>Gap-Hamming:</u> Any one-way protocol for 2-player random-partition requires $\Omega(n)$ bits communicated.
 - \therefore (I+ ϵ)-approx. for F₀ or entropy requires $\Omega(\epsilon^{-2})$ space.
- Index: Any one-way protocol for 2-player random-partition (with duplicates) requires $\Omega(n)$ bits communicated.
 - \therefore Connectivity of a graph G=(V, E) requires $\Omega(|V|)$ space.

- Naive reduction from fixed-partition-CC:
 - 1. Players determine random partition, send necessary data.
 - 2. Simulate protocol on random partition.

- Naive reduction from fixed-partition-CC:
 - 1. Players determine random partition, send necessary data.
 - 2. Simulate protocol on random partition.

- Naive reduction from fixed-partition-CC:
 - 1. Players determine random partition, send necessary data.
 - 2. Simulate protocol on random partition.
- <u>Problem:</u> Seems to require too much communication.

- Naive reduction from fixed-partition-CC:
 - 1. Players determine random partition, send necessary data.
 - 2. Simulate protocol on random partition.
- <u>Problem:</u> Seems to require too much communication.
- Consider random input and public coins:

Issue #1: Need independence of input and partition.

Issue #2: Generalize information statistics techniques.

a) Disjointnessb) Selection

a) Disjointnessb) Selection

<u>Instance:</u> t x n matrix,

$$X = \left(egin{array}{ccccccccc} 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \end{array}
ight)$$

and define, $DISJ_{n,t} = \bigvee_{i} AND_{t}(x_{1,i}, ..., x_{t,i})$

• <u>Instance:</u> t x n matrix,

and define, $DISJ_{n,t} = \bigvee_i AND_t(x_{1,i}, ..., x_{t,i})$

 <u>Unique intersection:</u> Each column has weight 0, 1, or t and at most one column has weight t.

<u>Instance:</u> t x n matrix,

and define, $DISJ_{n,t} = \bigvee_i AND_t(x_{1,i}, ..., x_{t,i})$

- <u>Unique intersection:</u> Each column has weight 0, 1, or t and at most one column has weight t.
- Thm: $\Omega(n/t)$ bound if t-players each get a row.

[Kalyanasundaram, Schnitger '92] [Razborov '92] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

<u>Instance:</u> t x n matrix,

and define, $DISJ_{n,t} = \bigvee_i AND_t(x_{1,i}, ..., x_{t,i})$

- <u>Unique intersection:</u> Each column has weight 0, 1, or t and at most one column has weight t.
- Thm: Ω(n/t) bound if t-players each get a row.
 [Kalyanasundaram, Schnitger '92] [Razborov '92]
 [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]
- Thm: $\Omega(n/t)$ bound for random partition for $\Omega(t^2)$ players.

[Chakrabarti, Shi, Wirth, Yao '01] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

• $\Pi(X)$ is transcript of δ -error protocol Π on random input $X \sim \mu$.

- $\Pi(X)$ is transcript of δ -error protocol Π on random input $X \sim \mu$.
- Information Cost: icost(Π)= $I(X:\Pi(X))$ Lower bound on the length of the protocol Amenable to direct-sum results...

- $\Pi(X)$ is transcript of δ -error protocol Π on random input $X \sim \mu$.
- Information Cost: $icost(\Pi) = I(X: \Pi(X))$ Lower bound on the length of the protocol Amenable to direct-sum results...

```
icost(\Pi) \ge \sum_{j} I(X^{j} : \Pi(X))
where X^{j} is j <sup>th</sup> column
of matrix X

Step I:
```

- $\Pi(X)$ is transcript of δ -error protocol Π on random input $X \sim \mu$.
- Information Cost: icost(Π)= $I(X:\Pi(X))$ Lower bound on the length of the protocol Amenable to direct-sum results...

icost(Π)
$$\geq \sum_{j} I(X^{j}:\Pi(X))$$
 where X^{j} is j th column of matrix X where Π ' is "best" δ-error protocol for AND_t Step I :

[Chakrabarti, Shi, Wirth, Yao '01] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

- $\Pi(X)$ is transcript of δ -error protocol Π on random input $X \sim \mu$.
- Information Cost: $icost(\Pi) = I(X: \Pi(X))$ Lower bound on the length of the protocol Amenable to direct-sum results...

 $\operatorname{icost}(\Pi) \ge \sum_{j} I(X^{j} : \Pi(X))$

where X^j is j^{th} column of matrix X

Step 1:

 $I(X^j:\Pi(X)) \geq \operatorname{icost}(\Pi')$

where Π ' is "best" δ -error protocol for AND_t

Step 2:

 $\operatorname{icost}(\Pi') \geq \Omega(1/t)$

assuming Π' is private-coin, one-way protocol

Step 3:

[Chakrabarti, Shi, Wirth, Yao '01] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

- $\Pi(X)$ is transcript of δ -error protocol Π on random input $X \sim \mu$.
- Information Cost: $icost(\Pi) = I(X: \Pi(X))$ Lower bound on the length of the protocol Amenable to direct-sum results...

$\operatorname{icost}(\Pi) \ge \sum_{j} I(X^{j} : \Pi(X))$

where X^j is j^{th} column of matrix X

Step 1:

$$I(X^j:\Pi(X)) \geq \operatorname{icost}(\Pi')$$

where Π ' is "best" δ -error protocol for AND_t

Step 2:

$$\operatorname{icost}(\Pi') \geq \Omega(1/t)$$

assuming Π' is private-coin, one-way protocol

Step 3:

- Necessary Generalization:
 - Step 1: Condition "icost" on public coins.
 - Step 2: Error of Π ' is best δ +Birthday(t,p) error protocol.
 - Step 3: Generalize result for public-coin protocols.

• <u>Define</u>: $F_k(S) = \sum_i (\text{freq. of i})^k$

- <u>Define</u>: $F_k(S) = \sum_i (\text{freq. of i})^k$
- <u>Reduction from set-disjointness:</u> [Alon, Matias, Szegedy '99]

$$S = \{i : x_{ij} = 1\}$$
 $F_k(S) \geq t^k \text{ if DISJ}_{n,t}(X) = 1$
 $F_k(S) \leq n \text{ if DISJ}_{n,t}(X) = 0$

- Define: $F_k(S) = \sum_i (\text{freq. of i})^k$
- Reduction from set-disjointness: [Alon, Matias, Szegedy '99]

$$S = \{i : x_{ij} = 1\}$$
 $F_k(S) \geq t^k \text{ if DISJ}_{n,t}(X) = 1$
 $F_k(S) \leq n \text{ if DISJ}_{n,t}(X) = 0$

- \underline{Thm} : $\Omega(n^{1-3/k})$ space bound for random order streams.
- Proof: Set $t^k=2n$ to prove $\Omega(n^{1-1/k})$ total communication Per-message communication is $\Omega(n^{1-1/k}/p) = \Omega(n^{1-3/k})$

- Define: $F_k(S) = \sum_i (\text{freq. of i})^k$
- <u>Reduction from set-disjointness:</u> [Alon, Matias, Szegedy '99]

$$S = \{i : x_{ij} = 1\}$$
 $F_k(S) \geq t^k \text{ if DISJ}_{n,t}(X) = 1$
 $F_k(S) \leq n \text{ if DISJ}_{n,t}(X) = 0$

- Thm: $\Omega(n^{1-3/k})$ space bound for random order streams.
- Proof: Set $t^k=2n$ to prove $\Omega(n^{1-1/k})$ total communication Per-message communication is $\Omega(n^{1-1/k}/p) = \Omega(n^{1-3/k})$
- Open Problem: $\Omega(n^{1-2/k})$ bound for random order?

a) Disjointnessb) Selection

• Find median of stream of m values in polylog(m) space.

- Find median of stream of m values in polylog(m) space.
- Thm: For adversarial-order stream, Θ(lg m / lg lg m) pass [Munro, Paterson '78] [Guha, McGregor '07a]

- Find median of stream of m values in polylog(m) space.
- <u>Thm:</u> For adversarial-order stream, Θ(lg m / lg lg m) pass [Munro, Paterson '78] [Guha, McGregor '07a]
- Thm: For random-order stream, $\Theta(\lg \lg m)$ pass

[Guha, McGregor '06] [Chakrabarti, Jayram, Patrascu '08]

- Find median of stream of m values in polylog(m) space.
- <u>Thm:</u> For adversarial-order stream, Θ(lg m / lg lg m) pass
 [Munro, Paterson '78] [Guha, McGregor '07a]
- <u>Thm:</u> For random-order stream, Θ(lg lg m) pass
 [Guha, McGregor '06] [Chakrabarti, Jayram, Patrascu '08]
- Our result: Using random-partition-CC techniques we get simpler and tighter pass/space trade-offs...

- Instance: Function on nodes of (p+1)-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to {0,1}
- Goal: Compute $f(f(...f(v_{root})....))$.
- Thm: With p-players, if i^{th} player knows f(v) when level(v)=i:
 Any p-round protocol requires $\Omega(t)$ communication.

- Instance: Function on nodes of (p+1)-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to {0,1}
- Goal: Compute $f(f(...f(v_{root})....))$.
- Thm: With p-players, if i^{th} player knows f(v) when level(v)=i:
 Any p-round protocol requires $\Omega(t)$ communication.

- Instance: Function on nodes of (p+1)-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to {0,1}
- Goal: Compute $f(f(...f(v_{root})....))$.

- Instance: Function on nodes of (p+1)-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to {0,1}
- Goal: Compute $f(f(...f(v_{root})....))$.

- Instance: Function on nodes of (p+1)-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to {0,1}
- Goal: Compute $f(f(...f(v_{root})....))$.

- Instance: Function on nodes of (p+1)-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to {0,1}
- Goal: Compute $f(f(...f(v_{root})....))$.
- Thm: With p-players, if i^{th} player knows f(v) when level(v)=i: Any p-round protocol requires $\Omega(t)$ communication.

• With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.

• With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.

- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.
- Relationship between t and # copies determines bound.

• Consider node v where f(v) is known to Bob.

• Consider node v where f(v) is known to Bob.

- Consider node v where f(v) is known to Bob.
- Creating Instance of Random-Partition Median Finding: I) Using public coin, players determine partition of tokens and set half to α and half to β .

- Consider node v where f(v) is known to Bob.
- Creating Instance of Random-Partition Median Finding: I) Using public coin, players determine partition of tokens and set half to α and half to β .

- Consider node v where f(v) is known to Bob.
- Creating Instance of Random-Partition Median Finding:
 Using public coin, players determine partition of tokens and set half to α and half to β.

- Consider node v where f(v) is known to Bob.
- Creating Instance of Random-Partition Median Finding: I) Using public coin, players determine partition of tokens and set half to α and half to β .
 - 2) Bob "fixes" balance of tokens under his control.

- Consider node v where f(v) is known to Bob.
- Creating Instance of Random-Partition Median Finding: I) Using public coin, players determine partition of tokens and set half to α and half to β .
 - 2) Bob "fixes" balance of tokens under his control.

- Consider node v where f(v) is known to Bob.
- Creating Instance of Random-Partition Median Finding: I) Using public coin, players determine partition of tokens and set half to α and half to β .
 - 2) Bob "fixes" balance of tokens under his control.
- Thm: Partition looks random if total number of tokens is greater than (max bias)². Hence, $m = \exp(2^p \lg t)$.

<u>Summary</u>

Introduced notion of Robust Lower Bounds

Tight communication bounds for disjointness, indexing, gap-hamming, and improved selection bound.

Data streams bounds including frequency moments, connectivity, entropy, F_0 , quantile estimation, ...

Many open problems... Thanks!

- Need protocol for fixed-partition AND_t using protocol for random-partition DISJ_{n.t}.
- Simulate Π (for disjointness) to solve AND_t:
 - a) Using public coin, create matrix X with j^{th} column X^{j}
 - b) Using public coin, partition X between p virtual players
 - c) Run Π : player i simulates virtual player with ith bit of X^{j} (Give up if a virtual player receives two bits from X^{j})

• Failure probability: δ +Birthday(t,p).

- Need protocol for fixed-partition AND_t using protocol for random-partition DISJ_{n.t}.
- Simulate Π (for disjointness) to solve AND_t:
 - a) Using public coin, create matrix X with j^{th} column X^{j}
 - b) Using public coin, partition X between p virtual players
 - c) Run Π : player i simulates virtual player with ith bit of X^{j} (Give up if a virtual player receives two bits from X^{j})

• Failure probability: δ +Birthday(t,p).

- Need protocol for fixed-partition AND $_t$ using protocol for random-partition DISJ $_{n.t}$.
- Simulate Π (for disjointness) to solve AND_t:
 - a) Using public coin, create matrix X with j^{th} column X^{j}
 - b) Using public coin, partition X between p virtual players
 - c) Run Π : player i simulates virtual player with ith bit of X^{j} (Give up if a virtual player receives two bits from X^{j})

- Need protocol for fixed-partition AND $_t$ using protocol for random-partition DISJ $_{n.t}$.
- Simulate Π (for disjointness) to solve AND_t:
 - a) Using public coin, create matrix X with j^{th} column X^{j}
 - b) Using public coin, partition X between p virtual players
 - c) Run Π : player i simulates virtual player with ith bit of X^{j} (Give up if a virtual player receives two bits from X^{j})

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \longrightarrow \left\{ \begin{pmatrix} & 0 & & & \\ & & 0 & 0 \\ & & 1 & & \end{pmatrix}, \begin{pmatrix} 0 & & 0 & 1 \\ 0 & 1 & & & \\ & & & & \end{pmatrix}, \begin{pmatrix} & & & \\ & & & & \\ & & & & & \\ \end{pmatrix}, \begin{pmatrix} & & & & \\ & & & & \\ & & & & & \\ \end{pmatrix} \right\}$$

• Failure probability: δ +Birthday(t,p).