Set Cover Algorithms
For Very Large Datasets

Graham Cormode
Howard Karloff
AT&T Labs-Research

Tony Wirth
University of Melbourne

[1]
Set Cover?

m Given a collection of sets
over a universe of items

m Find smallest
subcollection of sets that
also cover all the items.

[
Why Set Cover?

m The set cover problem arises in many contexts:
— Facility location: facility covers sites
— Machine learning: labeled example covers some items
— Information Retrieval: each document covers set of topics
— Data mining: finding a minimal ‘explanation’ for patterns
— Data quality: find a collection of rules to describe structure

]
How to solve it?

m Set Cover is NP-hard!

m Simple algorithm:
— Repeatedly select set with most uncovered items.
— Logarithmic factor guarantee: 1 +Inn
— No factor better than (1 - o(1)) In n possible

m In practice, greedy very useful:

— Better than other approximation algorithms
— Often within 10% of optimal

[
Existing Algorithms

m Greedy algorithm: 1+ In n approximation
— Until all n elements of X are in C (initially empty):
m Choose (one of) set(s) with maximum value of |Si - C|
mletC=CUSi

m Naive algorithm: no guaranteed approximation
— Sort the sets by their (initial) sizes, |Si|, descending
— Single pass through the sorted list:
m |f a set has an uncovered item, select it
m Update C

[
Example greedy

ABCDE ABDEG
AFG BCG
GH EH
cli A

]
Optimum

ABCDE
AFG

ABDFG

BCG

EH

T
What's wrong?

m Try implementing greedy on large dataset:
— Scales very poorly

m Millions of sets with universe of many millions of items?
m Dataset growth exceeds fast memory growth

m |f forced to use disk: selecting set requires
updating set sizes to account for covered items

m Even 30Mb instance required >1 minute to run on disk

[
Implementing greedy

m Main step: find set with largest |Si - C| value
m Inverted index:
— Maintain updated sizes in priority gueue
— Inverted index records which sets each item is in
— Costly to build index, no locality of reference
m Multipass solution:
— Loop through all sets, calculating |Si - C| on the fly
— Good locality of reference, but many passes!
— If |Six - C| drops below a threshold:
m Loop adds all sets with specific |Si- - C| value

[
Idea for our algorithm

m Huge effort to find max |Si- C|
m Instead find set to maximum uncovered size

m [f always at least factor a x maximum:
— We have 1 + (In n) / a approximation algorithm
— Proof similar to that for greedy

m We call it Disk-Friendly Greedy (DFG)

10

How to achieve this

11

Select parameter p > 1: governs approximation and run time
Partition sets into subcollections:
— Siin Zkif: pk<|Si| < p¥*t
For k &< K down to O:
— For each set Siin Zk:
mIf |Si- C| = p*: select Siand update C
m Else: let Si < Si- Cand add it to Zx’: p¥ < |Si| < p¥*?
For each Siin Zo: select S;, update C, if has uncovered item

[
Example DFG run

4—7 ABCDE | ABDFG

2-3 A BCG GH EH CI

1 A E|

12

[
In-memory Cost analysis

mEach S, either selected or put in lower subcollection

m Guaranteed to shrink by factor p every other pass

m Total number of items in all iterations is (1 + 1/(p-1)) | Si|
mSo 1+ 1/(p-1) times input read time

13

T
Disk model analysis

m All file accesses are |
m |nitial sweep through input
m Two passes for each subcollection

— One when sets from higher subcollections added
— One to select or knock down sets

m Block size B, K collections:
— Disk accesses for reading input: D = >|Si|/ B
— DFG requires 2D[1 + 1/(p-1)] + 2K disk reads

14

Disk-based results

m Tested on Frequent ltemset Mining Dataset Repository

m Show results on

15

naive
multipass
greedy
DFG

naive
multipass
greedy
DFG

(31Mb) and

time (s)
8.51
331.66
98.66

91.21

(1.4Gb)

| Solution|
20664

17750
17748

433412

[
Memory-based results

time (s) | Solution |
naive 2.20 20664
multipass 4.21 17746
greedy 2.99 17750

DFG

naive 100.98 433412
multipass 8049.08 406381
greedy 199.02 406351
DFG

16

[
Impact of p

95

m RAM-based results for %0 |

85

a0

time (s}

® Improving guaranteed
accuracy only increases
running time by 50% (30s)
552-10 08 0B o7 o6 55 o4 o8 o2 ol 1

m Observed solution size (p-1) value
improves, though not as »

much 413 |

412 |
411 |
410 |
409 |
408 |
407 |

406 | :
E'1U 2'9 E"B 2'? 2'5 2'5 2'4 2-3 2'2 2'1 1
17 {p-1) value

75

701

|Solution| (x 10%)

Summary

18

Noted poor performance of greedy, especially on disk

Introduced algorithm to greedy:
— Has approximation bound similar to greedy

On each disk-resident dataset: our algorithm 10 x faster
On largest instance: over 400 x faster
Solution essentially as good as greedy

Disk version almost as fast as RAM version:
— Not disk bound!

