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Set Cover?

� Given a collection of sets 

over a universe of items

� Find smallest 

subcollection of sets that 

also cover all the items.
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Why Set Cover?

� The set cover problem arises in many contexts:

– Facility location: facility covers sites

– Machine learning: labeled example covers some items

– Information Retrieval: each document covers set of topics

– Data mining: finding a minimal ‘explanation’ for patterns– Data mining: finding a minimal ‘explanation’ for patterns

– Data quality: find a collection of rules to describe structure
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How to solve it?

� Set Cover is NP-hard!

� Simple greedy algorithm:

– Repeatedly select set with most uncovered items.

– Logarithmic factor guarantee: 1 + ln n

– No factor better than (1 - o(1)) ln n possible– No factor better than (1 - o(1)) ln n possible

� In practice, greedy very useful:

– Better than other approximation algorithms

– Often within 10% of optimal
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Existing Algorithms

� Greedy algorithm: 1+ ln n approximation

– Until all n elements of X are in C (initially empty):

� Choose (one of) set(s) with maximum value of |Si - C|

� Let C = C ∪ Si*∪

� Naïve algorithm: no guaranteed approximation

– Sort the sets by their (initial) sizes, |Si|, descending

– Single pass through the sorted list:

� If a set has an uncovered item, select it

� Update C
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What’s wrong?

� Try implementing greedy on large dataset:

– Scales very poorly

� Millions of sets with universe of many millions of items?

� Dataset growth exceeds fast memory growth

� If forced to use disk: selecting “largest” set requires � If forced to use disk: selecting “largest” set requires 

updating set sizes to account for covered items

� Even 30Mb instance required >1 minute to run on disk
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Implementing greedy

� Main step: find set with largest |Si - C| value
� Inverted index:

– Maintain updated sizes in priority queue
– Inverted index records which sets each item is in
– Costly to build index, no locality of reference– Costly to build index, no locality of reference

� Multipass solution:
– Loop through all sets, calculating |Si - C| on the fly
– Good locality of reference, but many passes!
– If |Si* - C| drops below a threshold:
� Loop adds all sets with specific |Si* - C| value
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Idea for our algorithm

� Huge effort to find max |Si - C|

� Instead find set close to maximum uncovered size

� If always at least factor α × maximum:

– We have 1 + (ln n) / α approximation algorithm

– Proof similar to that for greedy– Proof similar to that for greedy

� We call it Disk-Friendly Greedy (DFG)
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How to achieve this

� Select parameter p > 1: governs approximation and run time

� Partition sets into subcollections:

– Si in Zk if:      pk ≤ |Si| < pk+1

� For k ← K down to 0:

– For each set Si in Zk:– For each set Si in Zk:

� If |Si - C| ≥ pk: select Si and update C

� Else: let Si ← Si - C and add it to Zk’ : pk’ ≤ |Si| < pk’+1

� For each Si in Z0: select Si, update C, if has uncovered item
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In-memory Cost analysis

�Each Si either selected or put in lower subcollection

�Guaranteed to shrink by factor p every other pass

�Total number of items in all iterations is (1 + 1/(p-1))|Si|

� So 1 + 1/(p-1) times input read time
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Disk model analysis

�All file accesses are sequential!

� Initial sweep through input

�Two passes for each subcollection

– One when sets from higher subcollections added

– One to select or knock down sets– One to select or knock down sets

�Block size B, K collections:

– Disk accesses for reading input: D = ∑|Si|/ B

– DFG requires 2D[1 + 1/(p-1)] + 2K disk reads
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Disk-based results

time (s) |Solution|

kosarak.dat naive 8.51 20664

multipass 331.66 17746

� Tested on Frequent Itemset Mining Dataset Repository 
� Show results on kosarak (31Mb) and webdocs (1.4Gb)

multipass 331.66 17746

greedy 98.66 17750

DFG 2.61 17748

webdocs.dat naive 91.21 433412

multipass — —

greedy — —

DFG 86.28 406440
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Memory-based results

time (s) |Solution|

kosarak.dat naive 2.20 20664

multipass 4.21 17746

greedy 2.99 17750

DFG 1.97 17741DFG 1.97 17741

webdocs.dat naive 100.98 433412

multipass 8049.08 406381

greedy 199.02 406351

DFG 93.38 406338
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Impact of p

� RAM-based results for 

webdocs.dat

� Improving guaranteed 

accuracy only increases 

running time by 50% (30s)running time by 50% (30s)

� Observed solution size 

improves, though not as 

much
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Summary

� Noted poor performance of greedy, especially on disk

� Introduced alternative algorithm to greedy:

– Has approximation bound similar to greedy

� On each disk-resident dataset: our algorithm 10 × faster

� On largest instance: over 400 × faster� On largest instance: over 400 × faster

� Solution essentially as good as greedy

� Disk version almost as fast as RAM version:

– Not disk bound!
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