
Set Cover Algorithms
For Very Large Datasets

Graham Cormode

Howard Karloff

AT&T Labs-Research

Tony Wirth

University of Melbourne

Set Cover?

� Given a collection of sets

over a universe of items

� Find smallest

subcollection of sets that

also cover all the items.

2

Why Set Cover?

� The set cover problem arises in many contexts:

– Facility location: facility covers sites

– Machine learning: labeled example covers some items

– Information Retrieval: each document covers set of topics

– Data mining: finding a minimal ‘explanation’ for patterns– Data mining: finding a minimal ‘explanation’ for patterns

– Data quality: find a collection of rules to describe structure

3

How to solve it?

� Set Cover is NP-hard!

� Simple greedy algorithm:

– Repeatedly select set with most uncovered items.

– Logarithmic factor guarantee: 1 + ln n

– No factor better than (1 - o(1)) ln n possible– No factor better than (1 - o(1)) ln n possible

� In practice, greedy very useful:

– Better than other approximation algorithms

– Often within 10% of optimal

4

Existing Algorithms

� Greedy algorithm: 1+ ln n approximation

– Until all n elements of X are in C (initially empty):

� Choose (one of) set(s) with maximum value of |Si - C|

� Let C = C ∪ Si*∪

� Naïve algorithm: no guaranteed approximation

– Sort the sets by their (initial) sizes, |Si|, descending

– Single pass through the sorted list:

� If a set has an uncovered item, select it

� Update C

5

AFG

Example greedy

ABCDE ABDFG

BCG

EH

A

I

GH

C I

E

6

Optimum

ABCDE ABDFG

BCGAFG

EH

A

I

GH

CI

E

7

What’s wrong?

� Try implementing greedy on large dataset:

– Scales very poorly

� Millions of sets with universe of many millions of items?

� Dataset growth exceeds fast memory growth

� If forced to use disk: selecting “largest” set requires � If forced to use disk: selecting “largest” set requires

updating set sizes to account for covered items

� Even 30Mb instance required >1 minute to run on disk

8

Implementing greedy

� Main step: find set with largest |Si - C| value
� Inverted index:

– Maintain updated sizes in priority queue
– Inverted index records which sets each item is in
– Costly to build index, no locality of reference– Costly to build index, no locality of reference

� Multipass solution:
– Loop through all sets, calculating |Si - C| on the fly
– Good locality of reference, but many passes!
– If |Si* - C| drops below a threshold:
� Loop adds all sets with specific |Si* - C| value

9

Idea for our algorithm

� Huge effort to find max |Si - C|

� Instead find set close to maximum uncovered size

� If always at least factor α × maximum:

– We have 1 + (ln n) / α approximation algorithm

– Proof similar to that for greedy– Proof similar to that for greedy

� We call it Disk-Friendly Greedy (DFG)

10

How to achieve this

� Select parameter p > 1: governs approximation and run time

� Partition sets into subcollections:

– Si in Zk if: pk ≤ |Si| < pk+1

� For k ← K down to 0:

– For each set Si in Zk:– For each set Si in Zk:

� If |Si - C| ≥ pk: select Si and update C

� Else: let Si ← Si - C and add it to Zk’ : pk’ ≤ |Si| < pk’+1

� For each Si in Z0: select Si, update C, if has uncovered item

11

ABD

Example DFG run

ABCDE FG

BCG HAFG H

4–7

2–3 IG E C

E

BCG H

A I

AFG H2–3

1

IG E C

12

In-memory Cost analysis

�Each Si either selected or put in lower subcollection

�Guaranteed to shrink by factor p every other pass

�Total number of items in all iterations is (1 + 1/(p-1))|Si|

� So 1 + 1/(p-1) times input read time

13

Disk model analysis

�All file accesses are sequential!

� Initial sweep through input

�Two passes for each subcollection

– One when sets from higher subcollections added

– One to select or knock down sets– One to select or knock down sets

�Block size B, K collections:

– Disk accesses for reading input: D = ∑|Si|/ B

– DFG requires 2D[1 + 1/(p-1)] + 2K disk reads

14

Disk-based results

time (s) |Solution|

kosarak.dat naive 8.51 20664

multipass 331.66 17746

� Tested on Frequent Itemset Mining Dataset Repository
� Show results on kosarak (31Mb) and webdocs (1.4Gb)

multipass 331.66 17746

greedy 98.66 17750

DFG 2.61 17748

webdocs.dat naive 91.21 433412

multipass — —

greedy — —

DFG 86.28 406440

15

Memory-based results

time (s) |Solution|

kosarak.dat naive 2.20 20664

multipass 4.21 17746

greedy 2.99 17750

DFG 1.97 17741DFG 1.97 17741

webdocs.dat naive 100.98 433412

multipass 8049.08 406381

greedy 199.02 406351

DFG 93.38 406338

16

Impact of p

� RAM-based results for

webdocs.dat

� Improving guaranteed

accuracy only increases

running time by 50% (30s)running time by 50% (30s)

� Observed solution size

improves, though not as

much

17

Summary

� Noted poor performance of greedy, especially on disk

� Introduced alternative algorithm to greedy:

– Has approximation bound similar to greedy

� On each disk-resident dataset: our algorithm 10 × faster

� On largest instance: over 400 × faster� On largest instance: over 400 × faster

� Solution essentially as good as greedy

� Disk version almost as fast as RAM version:

– Not disk bound!

18

