Set Cover Algorithms For Very Large Datasets

Graham Cormode

Howard Karloff AT&T Labs-Research

Tony Wirth University of Melbourne

Set Cover?

- Given a collection of sets over a universe of items
- Find smallest subcollection of sets that also cover all the items.

Why Set Cover?

- The set cover problem arises in many contexts:
 - Facility location: facility covers sites
 - Machine learning: labeled example covers some items
 - Information Retrieval: each document covers set of topics
 - Data mining: finding a minimal 'explanation' for patterns
 - Data quality: find a collection of rules to describe structure

How to solve it?

- Set Cover is NP-hard!
- Simple greedy algorithm:
 - Repeatedly select set with most uncovered items.
 - Logarithmic factor guarantee: 1 + ln n
 - No factor better than $(1 o(1)) \ln n$ possible
- In practice, greedy very useful:
 - Better than other approximation algorithms
 - Often within 10% of optimal

Existing Algorithms

- Greedy algorithm: 1+ In n approximation
 - Until all *n* elements of *X* are in *C* (initially empty):
 - Choose (one of) set(s) with maximum value of |S_i C|
 - Let $C = C \cup S_{i^*}$
- Naïve algorithm: no guaranteed approximation
 - Sort the sets by their (initial) sizes, |S_i|, descending
 - Single pass through the sorted list:
 - If a set has an uncovered item, select it
 - Update C

Example greedy

What's wrong?

- Try implementing greedy on large dataset:
 - Scales very poorly
- Millions of sets with universe of many millions of items?
- Dataset growth exceeds fast memory growth
- If forced to use disk: selecting "largest" set requires updating set sizes to account for covered items
- Even 30Mb instance required >1 minute to run on disk

Implementing greedy

- Main step: find set with largest |S_i C| value
- Inverted index:
 - Maintain updated sizes in priority queue
 - Inverted index records which sets each item is in
 - Costly to build index, no locality of reference
- Multipass solution:
 - Loop through all sets, calculating $|S_i C|$ on the fly
 - Good locality of reference, but many passes!
 - If $|S_{i^*} C|$ drops below a threshold:
 - Loop adds all sets with specific |S_i* C| value

Idea for our algorithm

- Huge effort to find max |*S_i C*|
- Instead find set close to maximum uncovered size
- If always at least factor $\alpha \times$ maximum:
 - We have $1 + (\ln n) / \alpha$ approximation algorithm
 - Proof similar to that for greedy
- We call it Disk-Friendly Greedy (DFG)

How to achieve this

- Select parameter p > 1: governs approximation and run time
- Partition sets into subcollections:
 - S_i in Z_k if: $p^k \le |S_i| < p^{k+1}$
- For $k \leftarrow K$ down to 0:
 - For each set S_i in Z_k :

• If $|S_i - C| \ge p^k$: select S_i and update C

• Else: let $S_i \leftarrow S_i - C$ and add it to $Z_{k'}: p^{k'} \le |S_i| < p^{k'+1}$

For each *S_i* in *Z*₀: select *S_i*, update *C*, if has uncovered item

Example DFG run

In-memory Cost analysis

- Each *S_i* either selected or put in lower subcollection
- Guaranteed to shrink by factor *p* every other pass
- Total number of items in all iterations is $(1 + 1/(p-1))|S_i|$
- So 1 + 1/(p-1) times input read time

Disk model analysis

- All file accesses are sequential!
- Initial sweep through input
- Two passes for each subcollection
 - One when sets from higher subcollections added
 - One to select or knock down sets
- Block size *B*, *K* collections:
 - Disk accesses for reading input: $D = \sum |S_i| / B$
 - DFG requires 2D[1 + 1/(p-1)] + 2K disk reads

Disk-based results

- Tested on Frequent Itemset Mining Dataset Repository
- Show results on kosarak (31Mb) and webdocs (1.4Gb)

		time (s)	Solution
kosarak.dat	naive	8.51	20664
	multipass	331.66	17746
	greedy	98.66	17750
	DFG	2.61	17748
webdocs.dat	naive	91.21	433412
	multipass	—	—
	greedy	—	—
	DFG	86.28	406440

Memory-based results

		time (s)	Solution
kosarak.dat	naive	2.20	20664
	multipass	4.21	17746
	greedy	2.99	17750
	DFG	1.97	17741
webdocs.dat	naive	100.98	433412
	multipass	8049.08	406381
	greedy	199.02	406351
	DFG	93.38	406338

Impact of *p*

- RAM-based results for webdocs.dat
- Improving guaranteed accuracy only increases running time by 50% (30s)
- Observed solution size improves, though not as much

Summary

- Noted poor performance of greedy, especially on disk
- Introduced alternative algorithm to greedy:
 - Has approximation bound similar to greedy
- On each disk-resident dataset: our algorithm 10 × faster
- On largest instance: over 400 × faster
- Solution essentially as good as greedy
- Disk version almost as fast as RAM version:
 - Not disk bound!