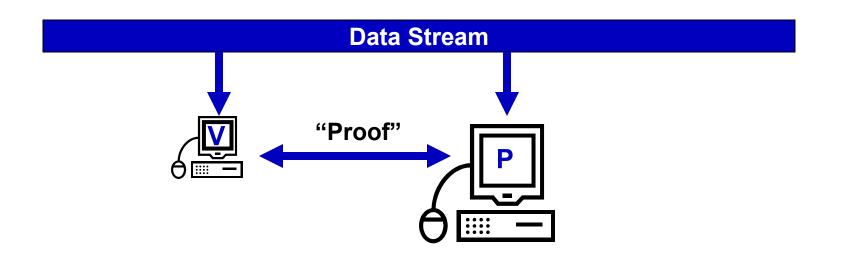
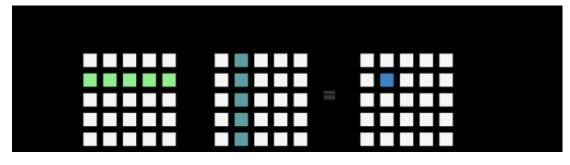
You can check others' work more quickly than doing it yourself


Graham Cormode

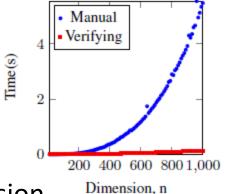
G.Cormode@warwick.ac.uk

Chris Hickey (Warwick)


Checksums for Computation

- Checksums on data are used to ensure correct transmission
 - If the checksums agree then (almost certainly) the data matches
- What could we do if we had checksums for computation?
 - Check that an algorithm has provided the expected answer
 - Check that a hardware accelerator has not made a mistake
 - Check that the cloud has not tried to cheat us!

Checksums for Computation Do Exist!


- There are techniques to quickly check arbitrary computation, but:
 - They need the computation to be written as an arithmetic circuit
 - They can be quite slow and require a lot of rounds of interaction
- There are faster techniques to check specific computations
- Example: Matrix multiplication
 - Given n x n matrices A and B, compute checksums for A, B and AB
 - Computing h(A), h(B) takes time linear in number of nonzero entries
 - Computing h(AB) from h(A), h(B) takes time O(n)
 - Compared to computing AB, takes time ~O(n^{2.8})

Verifying Data Analysis

Recent work [C, Hickey 18] shows how to apply this model to:

- (Least Squares) Regression
- Principal Component Analysis
- Linear Discriminant Analysis Classifier
- Technical challenges:

- Have to tolerate rounding errors to finite precision
- Need to verify that vectors are approximate eigenvectors
- Build primitives to check matrix inversion, matrix decomposition

Challenges to Data Engineering

Incorporate checksums for computation into real systems

- Outsourced computations return mathematical proof of correctness?
- Internal checks within systems?
- Generalize these techniques for a wider range of problems
 - Check Machine learning models are (approximately) optimal
 - Verify result of database queries (see [vSQL 2017])
- Optimize, extend and simplify
 - When can proof be provided as a byproduct of computation?
 - Allow efficient composition of computations?
 - Other models: interactive proofs, multiple provers?

THE UNIVERSITY OF WARWICK

European Research Council

Established by the European Commission