
You can check others' work

more quickly than doing it

yourself

Graham Cormode
G.Cormode@warwick.ac.uk

Chris Hickey (Warwick)

Checksums for Computation

 Checksums on data are used to ensure correct transmission

– If the checksums agree then (almost certainly) the data matches

 What could we do if we had checksums for computation?

– Check that an algorithm has provided the expected answer

– Check that a hardware accelerator has not made a mistake

– Check that the cloud has not tried to cheat us!

Data Stream

P
V “Proof”

Checksums for Computation Do Exist!

 There are techniques to quickly check arbitrary computation, but:

– They need the computation to be written as an arithmetic circuit

– They can be quite slow and require a lot of rounds of interaction

 There are faster techniques to check specific computations

 Example: Matrix multiplication

– Given n x n matrices A and B, compute checksums for A, B and AB

– Computing h(A), h(B) takes time linear in number of nonzero entries

– Computing h(AB) from h(A), h(B) takes time O(n)

– Compared to computing AB, takes time ~O(n2.8)

Verifying Data Analysis

 Recent work [C, Hickey 18] shows how to apply this model to:

– (Least Squares) Regression

– Principal Component Analysis

– Linear Discriminant Analysis Classifier

 Technical challenges:

– Have to tolerate rounding errors to finite precision

– Need to verify that vectors are approximate eigenvectors

– Build primitives to check matrix inversion, matrix decomposition

Challenges to Data Engineering

 Incorporate checksums for computation into real systems

– Outsourced computations return mathematical proof of correctness?

– Internal checks within systems?

 Generalize these techniques for a wider range of problems

– Check Machine learning models are (approximately) optimal

– Verify result of database queries (see [vSQL 2017])

 Optimize, extend and simplify

– When can proof be provided as a byproduct of computation?

– Allow efficient composition of computations?

– Other models: interactive proofs, multiple provers?

