
Summarizing and Mining
Skewed Data Streams

Graham Cormode
cormode@bell-labs.com

Flip Korn, S. Muthukrishnan, Divesh Srivastava

Data Streams
Many large sources of data are generated as

streams of updates:

–IP Network traffic data

–Text: email/IM/SMS/weblogs

–Scientific/monitoring data

Must analyze this data which is high speed (tens of
thousands to millions of updates/second) and
massive (gigabytes to terabytes per day)

Data Stream Analysis
Analysis of data streams consists of two parts:

� Summarization

–Fast memory is much smaller than data size, so
need a (guaranteed) concise synopsis

–Data is distributed, so need to combine synopses

� Mining

–Extract information about streams from synopsis

–Examples: Heavy hitters/frequent items, quantiles,
changes/difference, clustering/trending, etc.

Skew In Data

Such skew is prevalent in
network data, word frequency,
paper citations, city sizes, etc.

One concept, many names: Zipf
distribution, Pareto distribution,
Power-laws, multifractals, etc.

items sorted by frequency

fre
qu

en
cy

Data is rarely uniform in practice,
typically skewed

A few items are frequent, then a
long tail of infrequent items

log rank

lo
g

fre
qu

en
cy

Outline
� Better bounds for summarization/mining tasks by

incorporating skewness into analysis

–Count-Min sketch and Zipf distribution

� New mining tasks motivated by skewness in data

–Biased Quantiles

Zipf Distribution (Pareto)
Items drawn from a universe of size U

Draw N items, frequency of i’th most frequent is

fi ≈ Ni-z

Proportionality constant depends on U, z, not N

z indicates skewness:

–z =0: Uniform distribution

–z < 0.5: light skew/no skew

–0.5 " z < 1:moderate skew

–1 " z: (highly) skewed } most real data
in this range

Typical Skews

1.4 — 1.6Depth of website
exploration

1.1 — 1.3Word use in
English text

0.9 — 1.1FTP Transmission
size

0.7 — 0.8Web page
popularity

Zipf skewness, zData Source

Our contributions
A simple synopsis used to approximately answer:

� Point queries (PQ) — given item i, return how
many times i occurred in the stream, fi

� Second Frequency moment (F2) — compute sum
of squares of frequencies of all items

The basis of many mining tasks: histograms,
anomaly detection, quantiles, heavy hitters

Asymptotic improvement over prior methods:
for error bound ε, space is o(1/ε) for z>1
previously, cost was O(1/ε2) for F2, O(1/ε) for PQ

Point Estimation

Use the Count-Min Sketch structure, introduced
in [CM04] to answer point queries with error <εN
with probability at least 1-δ

Tighter analysis here for skewed data, plus new
analysis for F2.

Ingredients:

–Universal hash fns
h1..hlog 1/δ {items}� {1..w}

–Array of counters CM[1..w, 1..log 1/δ]

Update Algorithm

+1

+1

+1

+1

h1(i)

hlog 1/δ(i)

i,count

Count-Min Sketch
w

log 1/δ

Analysis for Point Queries
Split error into:

–Collisions with w/3 largest items

–Collisions with the remaining items

With constant probability (2/3), no large items
collide with the queried point.

Expected error

Applying Zipf tail bounds and setting w = 3ε-1/z.

Markov Inequality: Pr[error > εN] < 1/3.

Take Min of estimates: Pr[error > εN] < 3-log 1/δ < δ

Application to top-k items
Can find fi with (1±ε) relative error for i<k

(ie, the top-k most frequent items).

Applying similar analysis and tail bounds gives:

and so w = O(k/ε) for any z>1.

Improves the O(k/ε2) bound due to [CCFC02]

We only require z>1, do not need value of z.

Second Frequency Moment
Second Frequency Moment, F2 = ∑i fi2

Two techniques to make estimate from CM sketch:

� CM+: minj ∑k=1
w CM[j,k]2

— min of F2 of rows in sketch

� CM-: medianj ∑k=1
w/2 (CM[j,2k] – CM[j,2k-1])2

— median of F2 of differences of adjacent
entries in the sketch

We compare bounds for both methods.

CM+ Analysis
With constant probability, the largest w1/2 items all

fall in different buckets. For z>1:

CM+ Analysis
Simplifying, we set the expected error = ½εF2.

This gives w = O(ε-2/(1+z)).

Applying Markov inequality shows error is at most
εF2 with constant probability.

Taking the minimum of the log 1/δ repetitions
reduces failure probability to δ.

Total space cost = O(ε-2/(1+z) log 1/δ), provided z>1

CM- Analysis
For z>1/2, again constant probability that the

largest w1/2 items all fall in different buckets.

We show that:

–Expectation of each CM- estimate is F2

–Variance " 8F2
2 w-(1-2z)/2

Setting Var = ε2 F2
2 and applying Chebyshev

bound gives constant probability of < εF2 error.

Taking the median amplifies this to δ probability

Total cost space = O(ε-4/(1+2z) log 1/δ), if z>½

F2 Estimation Summary

(1/ε)2/1+z

(1/ε)4/(1+2z)

(1/ε)2

Space Cost

CM+1 < z

CM-½ < z " 1

CM-z " ½

MethodSkewness

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5

Zipf skewness z

Po
w

er
 o

f 1
/ εε εε

Experiments: Point Queries

Max Error on Point Queries from Zipf(1.6)

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100 1000

Size / KB

M
ax

 E
rr

or

CM

CCFC

x^-1.6

Maximum Error on Zipf data with 27KB space

0.0%
0.2%
0.4%
0.6%
0.8%
1.0%
1.2%
1.4%
1.6%

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Zipf parameter

O
bs

er
ve

d
er

ro
r

CM

CCFC

� On synthetic data, significantly outperforms worst
error from comparable method [CCFC02]

� Error decays as space increases, as predicted

Experiments: F2 Estimation

� Experiments on complete works of Shakespeare
(5MB, z≈1.2) and IP traffic data (20MB, z≈1.3)

� CM- seems to do better in practice on real data.

F2 Estimation on Shakespeare

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1 10 100 1000

Space / KB

O
bs

er
ve

d
Er

ro
r

CM+

CM-

F2 Estimation on IP Request Data

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100 1000

Size / KB

O
bs

er
ve

d
Er

ro
r

CM+

CM-

Experiments: Timing
Easily process 2-3million new items / second on

standard desktop PC.

Queries are also fast

– point queries ≈ 1µs

– F2 queries ≈ 100µs

Alternative methods are at least 40-50% slower.

Outline
� Better bounds for summarization/mining tasks by

incorporating skewness into analysis

–Count-Min sketch and Zipf distribution

� New mining tasks motivated by skewness in data

–Biased Quantiles

Quantiles
Quantiles summarize data distribution concisely.

Given N items, the φ–quantile is the item with rank
φN in the sorted order.

Eg. The median is the 0.5-quantile, the minimum
is the 0-quantile.

Equidepth histograms put bucket boundaries on
regular quantile values, eg 0.1, 0.2…0.9

Quantiles are a robust and rich summary:
median is less affected by outliers than mean

Quantiles over Data Streams
Data stream consists of N items in arbitrary order.

Models many data sources eg network traffic, each
packet is one item.

Requires linear space to compute quantiles exactly
in one pass, Ω(N1/p) in p passes.

ε-approximate computation in sub-linear space

–Φ-quantile: item with rank between (Φ-ε)N and (Φ+ε)N

– [GK01]: insertions only, space O(1/ε log(εN))

– [CM04]: insertions and deletions, space O(1/ε log 1/δ)

Biased Quantiles
IP network traffic is very skewed

– Long tails of great interest

– Eg: 0.9, 0.95, 0.99-quantiles of TCP round trip times

Issue: uniform error guarantees
– ε = 0.05: okay for median, but not 0.99-quantile

– ε = 0.001: okay for both, but needs too much space

Goal: support relative error guarantees in small
space
– Low-biased quantiles: φφφφ-quantiles in ranks φ(1φ(1φ(1φ(1±εεεε)N

– High-biased quantiles: (1-φφφφ)-quantiles in ranks
(1-(1±ε)φφφφ)N

Prior Work
Sampling approach given by Gupta and Zane

[GZ03] in context of a different problem:

–Keep O(1/ε) samplers at different sample rates,
each keeping a sample of O(1/ε2) items

–Total space: O(1/ε3), probabilistic algorithm

Uses too much space in practice.

Is it possible to do better? Without randomization?

Intuition
Example shows intuition behind our approach.

Low-biased quantiles: give error εφ on φ-quantiles

–Set ε=10%. Suppose we know approximate
median of n items is M — so absolute error is εn/2

–Then there are n inserts, all above M

–M is now the first quartile, so we need error εN/4

M

εn/2

Intuition
How can error bounds be maintained?

–Total number of items is now N=2n, so required
absolute error bound is for M is still εn/2

Error bound never shrinks too fast, so we can
hope to guarantee relative errors.

Challenge is to guarantee accuracy in small space

M

εn/2

Space for Biased Quantiles
Any solution to the Biased Quantiles problem must

use space at least Ω(1/ε log(εN))

Shown by a counting argument, there are
Ω(1/ε log(εN)) possible different answers based
on choice of φ

For uniform quantiles, corresponding lower bound
is Ω(1/ε) — biased quantiles problem is strictly
harder in terms of space needed.

Our Approach
A deterministic algorithm that guarantees relative

error for low-biased or high-biased quantiles

Three main routines:

–Insert(v) — inserts a new item, v

–Compress — periodically prune data structure

–Output(φ) — output item with rank (1±εεεε)φN

Similar structure to Greenwald-Khanna algorithm
[GK01] for uniform quantiles (φ±εεεε), but need new
implementation and analysis.

Data Structure
Store tuples ti = (vi, gi, ∆i) sorted by vi

–vi is an item from the stream

–gi = rmin(vi) – rmin(vi-1)

– ∆i = rmax(vi) – rmin(vi)

Define ri = ∑j=1
i-1 gj

We will guarantee that the true rank of vi is
between ri + gi and ri + gi + ∆i

v1

v2

v3

g1 g2
g3 g4

∆1

∆2

∆3

∆4
v4

Biased Quantiles Invariant
In order to guarantee accurate answers, we

maintain at all times for all i:

Intuitively, if the uncertainty in rank is
proportional to ε times a lower bound on rank,
this should give required accuracy

gi + ∆i """" max {2εri, 1}

“uncertainty”
in rank of vi

2ε times lower bound
on rank of vi

Output Routine

Compute ri

Upper bound on
allowed rank

max rank of vi
Output previous

item, vi-1

Claim: Output(φ) correctly outputs ε−approximate
φ-biased quantile

Proof
i is the smallest index such that

ri + gi + ∆i > φn + εφn (*)

So ri-1 + gi-1 + ∆i-1 """" (1 + ε)φ n. [+]

Using the invariant on (*), (1 + 2ε)ri > (1+ε)φn
and (rearranging) ri > (1-ε)φn. [-]

Since ri = ri-1 + gi-1, we combine [-] and [+]:

[-] (1-ε)φn < ri-1 + gi-1

" " " " (true rank of vi-1) """"

ri-1 + gi-1 + ∆i-1 """" (1+ε)φn [+]

Inserting a new item
We must show update operations maintain bounds

on the rank of vi and the BQ invariant

To insert a new item, we find smallest i such that
v < vi

–Set g = 1 (rank of v is at least 1 more than vi-1)

–Set ∆ = max{2ε ri,1}-1 (uncertainty in rank at
most one less than ∆i """" max{2ε ri,1})

–Insert (v,g,∆) before ti in data structure

Easy to see that Insert maintains the BQ invariant

Compressing the Data Structure
Insert(v) causes data structure to grow by one

tuple per update. Periodically we can Compress
the data structure by pruning unneeded tuples.

Merge tuples ti =(vi, gi, ∆i) and ti+1=(vi+1, gi+1, ∆i+1)
together to get (vi+1, gi+gi+1, ∆i+1).

⇒⇒⇒⇒ Correct semantics of g and ∆

Only merge if gi + gi+1 + ∆i+1 """" max{2εri,1}

⇒⇒⇒⇒ Biased Quantiles Invariant is preserved

k-biased Quantiles
Alternate version: sometimes we only care about,

eg, φ = ½, ¼, … ½k

Can reduce the space requirement by weakening
the Biased Quantiles invariant:

k-BQ invariant:
gi + ∆i """" 2ε max{ri, φkn, ε/2}

Implementations were based on the algorithm
using this invariant.

Experimental Study
The k-biased quantiles algorithm was implemented

in the Gigascope data stream system.

Ran on a mixture of real (155Mbs live traffic
streams) and synthetic (1Gbs generated traffic)
data.

Experimented to study:

–Space Cost

–Observed accuracy for queries

–Update Time Cost

Experiments: Space Cost

k-biased quantiles, vs. GK with ε = eps φk

⇒⇒⇒⇒ Space usage scales roughly as k/ε logc ε N on
real data, but grows more quickly in worst case.

Experiments: Accuracy

GK1: ε = eps

GK2: ε = eps φk

Good tradeoff between space and error on real data

Experiments: Time Cost
Overhead per packet was about 5 – 10µs

Few packet drops (<1%) at Gigabit ethernet
speed.

Choice of data structure to implement the list of
tuples was an important factor.

– running compress periodically is blocking operation.
Instead, do a partial compression per update

–“cursor” + sorted list (5µs / packet) does better
than balanced tree structure (22µs / packet)

Extension: Targeted Quantiles
Further generalization: before the data stream, we

are given a set T of (φ,ε) pairs.

We must be able to answer φ-quantile queries over
data streams with error ±εn.

From T, generate new invariant f(r,n) to maintain:

In paper, we show that
maintaining gi + ∆i """" f(ri,n)
guarantees targeted
quantiles with required
accuracy.

Deletions
For uniform quantile guarantees, can handle item

deletions in probabilistic setting (with CM sketch)

But, provably need linear space for biased
quantiles (with a strong “adversary”), even
probabilistically

Sliding window also requires large space.

Conclusions
Skew is prevalent in many realistic situations

� By taking account of the skew inherent in most
realistic data sources, can considerably improve
results for summarizing and mining tasks.

� New problems eg Biased Quantiles give a non-
uniform way to study skewed data.

Many other tasks can benefit from incorporating
skew either into the problem, or into the analysis
of the solution.

Extensions
Applying skewed data mining to other structured

domains: hierarchical domains, graph data etc.

Work in progress: new algorithm for Biased
Quantiles with provable space bounds, extension
to multi-dimensional data etc.

