Engineering Privacy for Small Groups

Graham Cormode

g.cormode@warwick.ac.uk

Tejas Kulkarni (ATI/Warwick)

Divesh Srivastava (AT&T)

Many horror stories around data release...

Differential Privacy (Dwork et al 06)

```
A randomized algorithm K satisfies \varepsilon-differential
privacy if:
Given two data sets that differ by one individual,
D and D', and any property S:
Pr[K(D) \in S] \leq e^{\varepsilon} Pr[K(D') \in S]
```

- Can achieve differential privacy for counts by adding a random noise value
- Uncertainty due to noise "hides" whether someone is present in the data

Achieving ε-Differential Privacy

(Global) Sensitivity of publishing:

 $s = \max_{x,x'} |F(x) - F(x')|, x, x'$ differ by 1 individual

E.g., count individuals satisfying property P: one individual changing info affects answer by at most 1; hence s = 1

For every value that is output:

- Add Laplacian noise, Lap(ε/s):
- Or Geometric noise for discrete case:

Simple rules for composition of differentially private outputs:

Given output O_1 that is ε_1 private and O_2 that is ε_2 private

- (Sequential composition) If inputs overlap, result is $\varepsilon_1 + \varepsilon_2$ private
- (Parallel composition) If inputs disjoint, result is $max(\varepsilon_1, \varepsilon_2)$ private

OF

Technical Highlights

- There are a number of building blocks for DP:
 - Geometric and Laplace mechanism for numeric functions
 - Exponential mechanism for sampling from arbitrary sets
 - Uses a user-supplied "quality function" for (input, output) pairs

THE UNIVERSITY OF

- And "cement" to glue things together:
 - Parallel and sequential composition theorems
- With these blocks and cement, can build a lot
 - Many papers arrive from careful combination of these tools!
- Useful fact: any post-processing of DP output remains DP
 - (so long as you don't access the original data again)
 - Helps reason about privacy of data release processes

Limitations of Differential Privacy

- Differential privacy is NOT an algorithm but a property
 - Have to decide what algorithm to use and prove privacy properties
- Differential privacy does NOT guarantee utility
 - Naïve application of differential privacy may be useless
- The output of a differentially private process often does not have the same format as data input
- Basic model assumes that the data is held by a trusted aggregator

Local Differential Privacy

- Data release under DP assumes a trusted third party aggregator
 - What if I don't want to trust a third party?
 - Use crypto?: fiddly secure multiparty computation protocols
- OR: run a DP algorithm with one participant for each user
 - Not as silly as it sounds: noise cancels over large groups
 - Implemented by Google and Apple (browsing/app statistics)
- Local Differential privacy state of the art in 2016: Randomized response (1965): five decade lead time!
- Lots of opportunity for new work:
 - Designing optimal mechanisms for local differential privacy
 - Adapt to apply beyond simple counts

Randomized Response and DP

Developed as a technique for surveys with sensitive questions

- "How will you vote in the election?"
- Respondents may not respond honestly!
- Simple idea: tell respondents to lie (in a controlled way)
 - Randomized Response: Toss a coin with probability p > ½
 - Answer truthfully if head, lie if tails
- Over a population of size n, expect pφn + (1-p)(1-φ)n
 - Knowing p and n, solve for unknown parameter φ
- RR is DP: the ratio between the same output for different inputs is p/(1-p)
 - Larger p: more confidence (lower variance) but lower privacy
 - A local algorithm: no trusted aggregator

8

Small Group Privacy

- Many scenarios where there is a small group who trust each other with private data
 - A family who share a house
 - A team collaborating in an office
 - A group of friends in a social network

- They can gather their data together, and release through DP
 - Larger than the single entity model of local DP
 - But smaller than the general aggregation of data model
- We want to design *mechanisms* that have nice properties
 - A mechanism defines the output distribution, given the input

Mechanism Design

• We want to construct optimal mechanisms for data release

- Target function: each user has a bit; release the sum of bits
- Input range = output range = {0, 1, ... n}
- Model a mechanism as a matrix of conditional probabilities Pr[i|j]
- DP introduces constraints on the matrix entries:

 α Pr[i|j] ≤ Pr[i|j+1]

– Neighbouring entries should differ by a factor of at most $\boldsymbol{\alpha}$

- ♦ We want to penalize outputs that are far from the truth: Define loss function L_p = ∑_{i,j} w_j Pr[i|j] |i − j|^p * (n+1)/n for weights (prior) w_i
 - We will focus on the core case of p=0, and uniform prior

Mechanism Properties

There are various properties we may want mechanisms to have:

- Row Honesty RH: $\forall i,j : Pr[i|i] \ge Pr[i|j]$
- Row Monotonicity RM: prob. decreases from Pr[i|i] along row
 - Row Monotonicity implies Row Honesty
- Column Honesty CH and Column Monotonicity CM, symmetrically
- ◆ Fairness F: ∀ i, j : Pr[i|i] = Pr[j|j]
 - Fairness and row honesty implies column honesty
- Weak honesty WH: $Pr[i|i] \ge 1/(n+1)$
 - Achievable by the trivial uniform mechanism UM Pr[i|j] = 1/(n+1)

UNIVERSITY OF

- ♦ Symmetry: ∀ i, j : Pr[i|j] = Pr[n-i|n-j]
 - Symmetry is achievable with no loss of objective function

Finding Optimal Mechanisms

- Goal: find optimal mechanisms for a given set of properties
- Can solve with optimization
 - Objective function is linear in the variables Pr[i|j]
 - Properties can all be specified as linear constraints on Pr[i|j]s
 - DP property is a linear constraint on Pr[i|j]s
- So can specify any desired set of combinations and solve an LP
- Patterns emerge... there are only a few distinct outcomes
 - Aim to understand the structure of optimal mechanisms
 - We seek explicit constructions
 - More efficient and amenable to analysis than solving LPs

Basic DP

If we only seek DP, we always find a structured result

With symmetry and row monotonicity

(x	$x \alpha$	$x\alpha^2$	$x \alpha^3$		$x\alpha^n$
$y\alpha$	У	$y \alpha$	$y\alpha^2$		$y\alpha^{n-1}$
$y\alpha^2$	y lpha	У	y lpha		$y\alpha^{n-2}$
$y\alpha^3$	$y\alpha^2$	$y \alpha$	У	• • •	$y\alpha^{n-3}$
$y\alpha^4$	$y \alpha^3$	$y\alpha^2$	ylpha	•••	$y\alpha^{n-4}$
:	:	:	:	÷.,	:
$x\alpha^n$	$x\alpha^{n-1}$	$x\alpha^{n-2}$	$x\alpha^{n-3}$		x)
					· · · ·

• Here x = $1/(1+\alpha)$, y= $(1-\alpha)/(1+\alpha)$

This is the truncated geometric mechanism GM [Ghosh et al. 09]:

- Add symmetric geometric noise with parameter α to true answer
- Truncate to range {0...n}

Can prove this is the unique such optimal mechanism

IVFRSITY

Limitations of GM

The Geometric Mechanism (GM) is not altogether satisfying

- Tends to place a lot of weight on $\{0, n\}$ when α is large
- Misses most of the defined properties
 - Lacks Fairness (Pr[i|i]=Pr[j|j])
 - Achieves Weak Honesty (Pr[i|i] > Pr[i|j]) only if $n > 2\alpha /(1-\alpha)$
 - Achieves Column Monotonicity only if $\alpha < \frac{1}{2}$ (low privacy)
- But its L_0 score is the optimal value: $2\alpha / (1+\alpha)$
 - We seek more structured mechanisms that have similar score

			GM		
0	0.524	0.476	0.433	0.394	0.358
output	0.043	0.048	0.043	0.039	0.036
nism C	0.039	0.043	0.048	0.043	0.039
Mecha	0.036	0.039	0.043	0.048	0.043
4	0.358	0.394	0.433	0.476	0.524
	0	1	2	3	4

Mechanism Input

Example for $\alpha = 0.9$

WARWICK

Explicit Fair Mechanism EM

• We construct a new 'explicit fair mechanism' (uniform diagonal):

(у	yα	$y \alpha^2$	$y\alpha^3$	$y\alpha^4$	$y\alpha^4$	$y\alpha^4$	$y\alpha^4$
yα	у	yα	$y \alpha^2$	$y\alpha^3$	$y\alpha^3$	$y\alpha^3$	$y\alpha^3$
yα	yα	у	yα	$y\alpha^2$	$y\alpha^3$	$y\alpha^3$	$y\alpha^3$
$y\alpha^2$	$y \alpha^2$	yα	у	yα	$y\alpha^2$	$y \alpha^2$	$y\alpha^2$
$y \alpha^2$	$y \alpha^2$	$y \alpha^2$	yα	У	yα	$y \alpha^2$	$y\alpha^2$
$y\alpha^3$	$y\alpha^3$	$y\alpha^3$	$y \alpha^2$	yα	у	yα	yα
$y\alpha^3$	$y\alpha^3$	$y\alpha^3$	$y\alpha^3$	$y \alpha^2$	yα	У	yα
$\sqrt{y\alpha^4}$	$y\alpha^4$	$y\alpha^4$	$y \alpha^4$	$y\alpha^3$	$y\alpha^2$	yα	_ y]

- Each column is a permutation of the same set of values
- Additionally has column and row monotonicity, symmetry
- This is an optimal fair mechanism:
 - Entries in middle column are all as small as DP will allow
 - Hence y cannot be bigger
- 15 Cost slightly higher than Geometric MechanismWARWICK

Summary of mechanisms

Based on relations between properties, we can conclude:

- Fair Mechanism (EM) and Geometric Mechanism (GM) have explicit forms
- Weak Mechanism (WM) found by solving LP with weak honesty constraint

Property	GM	UM	EM	WM
Symmetry (S)	Y	Y	Y	Y
Row Monotone (RM)	Y	Y	Y	Y
Column Monotone (CM)		Y	Y	Y
Fairness (F)	Ν	Y	Y	Ν
Weak Honesty (WH)		Y	Y	Y
\mathbb{L}_0	$\frac{2\alpha}{1+\alpha}$	1	$\approx \frac{2\alpha}{1+\alpha} \cdot \frac{n+1}{n}$	$\geq \frac{2\alpha}{1+\alpha}$

Comparing Mechanisms

• Heatmaps comparing mechanisms for $\alpha = 0.9$, n=4

L₀ score behaviour

• L_0 score varies as a function of n and α

– WM converges on GM for $n \ge 2\alpha / (1-\alpha)$

Performance on real data

Using UCI Adult data set of demographic data

- Construct small groups in the data, target different binary attributes
- Compute Root-Mean-Squared Error of per-group outputs
- EM and WM generally preferable for wide range of α values

Summary

- Carefully crafted mechanisms for data release perform well on small groups
- Many more natural questions for small groups and local DP
- Lots of technical work left to do:
 - Structured data: other statistics, graphs, movement patterns
 - Unstructured data: text, images, video?
 - Develop standards for (certain kinds of) data release

Joint work with Divesh Srivastava (AT&T), Tejas Kulkarni (Warwick) Supported by AT&T, Royal Society, European Commission