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Many horror stories around data release... 
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We need to solve this 
data release problem... 



Differential Privacy (Dwork et al 06) 

A randomized algorithm K satisfies ε-differential 
privacy if: 

Given two data sets that differ by one individual, 
D and D’, and any property S: 
 
 Pr[ K(D)  S]  ≤  eε Pr[ K(D’)  S]  
 

A randomized algorithm K satisfies ε-differential 
privacy if: 

Given two data sets that differ by one individual, 
D and D’, and any property S: 
 
 Pr[ K(D)  S]  ≤  eε Pr[ K(D’)  S]  
 

• Can achieve differential privacy for counts by adding a random 
noise value 

• Uncertainty due to noise “hides” whether someone is present 
in the data 



Achieving ε-Differential Privacy 

  (Global) Sensitivity of publishing:   
  s = maxx,x’ |F(x) – F(x’)|, x, x’ differ by 1 individual 

  E.g., count individuals satisfying property P: one individual 
 changing info affects answer by at most 1; hence s = 1 
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  For every value that is output: 

 Add Laplacian noise, Lap(ε/s): 
 Or Geometric noise for discrete case:  
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Simple rules for composition of differentially private outputs: 
 Given output O1 that is 1 private and O2 that is 2 private 
  (Sequential composition) If inputs overlap, result is 1 + 2 private 
  (Parallel composition) If inputs disjoint, result is max(1, 2) private 
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Technical Highlights 

 There are a number of building blocks for DP: 

– Geometric and Laplace mechanism for numeric functions 

– Exponential mechanism for sampling from arbitrary sets 

 Uses a user-supplied “quality function” for (input, output) pairs 

 And “cement” to glue things together: 

– Parallel and sequential composition theorems 

 With these blocks and cement, can build a lot 

– Many papers arrive from careful combination of these tools! 

 Useful fact: any post-processing of DP output remains DP 

– (so long as you don’t access the original data again) 

– Helps reason about privacy of data release processes 
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Limitations of Differential Privacy 

 Differential privacy is NOT an algorithm but  a property 

– Have to decide what algorithm to use and prove privacy properties 

 Differential privacy does NOT guarantee utility 

– Naïve application of differential privacy may be useless 

 The output of a differentially private process often does not have 
the same format as data input 

 Basic model assumes that the data is held by a trusted aggregator 
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Local Differential Privacy 

 Data release under DP assumes a trusted third party aggregator 

– What if I don’t want to trust a third party?  

– Use crypto?: fiddly secure multiparty computation protocols 

 OR: run a DP algorithm with one participant for each user 

– Not as silly as it sounds: noise cancels over large groups 

– Implemented by Google and Apple (browsing/app statistics) 

 Local Differential privacy state of the art in 2016: 
Randomized response (1965): five decade lead time! 

 Lots of opportunity for new work:  

– Designing optimal mechanisms for local differential privacy 

– Adapt to apply beyond simple counts 
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Randomized Response and DP 

 Developed as a technique for surveys with sensitive questions 

– “How will you vote in the election?” 

– Respondents may not respond honestly! 

 Simple idea: tell respondents to lie (in a controlled way) 

– Randomized Response: Toss a coin with probability p > ½  

– Answer truthfully if head, lie if tails 

 Over a population of size n, expect pφn + (1-p)(1-φ)n 

– Knowing p and n, solve for unknown parameter φ 

 RR is DP: the ratio between the same output for  
different inputs is p/(1-p) 

– Larger p: more confidence (lower variance) but lower privacy 

– A local algorithm: no trusted aggregator 
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Small Group Privacy 

 Many scenarios where there is a small group who trust each 
other with private data 

– A family who share a house 

– A team collaborating in an office 

– A group of friends in a social network 

 They can gather their data together, and release through DP 

– Larger than the single entity model of local DP 

– But smaller than the general aggregation of data model 

 We want to design mechanisms that have nice properties 

– A mechanism defines the output distribution, given the input 
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Mechanism Design 

 We want to construct optimal mechanisms for data release 

– Target function: each user has a bit; release the sum of bits 

– Input range = output range = {0, 1, … n} 

 Model a mechanism as a matrix of conditional probabilities Pr[i|j] 

 DP introduces constraints on the matrix entries:  
  α Pr[i|j]   Pr[i|j+1] 

– Neighbouring entries should differ by a factor of at most α 

 We want to penalize outputs that are far from the truth: 
Define  loss function Lp = i,j wj Pr[i|j] |i – j|p * (n+1)/n 
for weights (prior) wj 

– We will focus on the core case of p=0, and uniform prior 
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Mechanism Properties 

There are various properties we may want mechanisms to have: 

 Row Honesty RH:  i,j : Pr[i|i]  Pr[i|j]  

 Row Monotonicity RM: prob. decreases from Pr[i|i] along row 

– Row Monotonicity implies Row Honesty 

 Column Honesty CH and Column Monotonicity CM, symmetrically 

 Fairness F:  i, j : Pr[i|i] = Pr[j|j] 

– Fairness and row honesty implies column honesty 

 Weak honesty WH: Pr[i|i]  1/(n+1) 

– Achievable by the trivial uniform mechanism UM Pr[i|j] = 1/(n+1) 

 Symmetry:  i, j : Pr[i|j] = Pr[n-i|n-j] 

– Symmetry is achievable with no loss of objective function 
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Finding Optimal Mechanisms 

 Goal: find optimal mechanisms for a given set of properties 

 Can solve with optimization 

– Objective function is linear in the variables Pr[i|j] 

– Properties can all be specified as linear constraints on Pr[i|j]s 

– DP property is a linear constraint on Pr[i|j]s 

 So can specify any desired set of combinations and solve an LP 

 Patterns emerge… there are only a few distinct outcomes 

– Aim to understand the structure of optimal mechanisms 

– We seek explicit constructions 

 More efficient and amenable to analysis than solving LPs 
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Basic DP 

 If we only seek DP, we always find a structured result 

– With symmetry and row monotonicity 
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 Here x = 1/(1+), y=(1-)/(1+) 

 This is the truncated geometric mechanism GM [Ghosh et al. 09]: 

 Add symmetric geometric noise with parameter  to true answer 

 Truncate to range {0…n} 

 Can prove this is the unique such optimal mechanism 

 



Limitations of GM 

 The Geometric Mechanism (GM) is not altogether satisfying 

– Tends to place a lot of weight on {0, n} when  is large 

 Misses most of the defined properties 

– Lacks Fairness (Pr[i|i]=Pr[j|j]) 

– Achieves Weak Honesty (Pr[i|i]>Pr[i|j]) only if n > 2 /(1-) 

– Achieves Column Monotonicity only if  < ½ (low privacy) 

 But its L0 score is the optimal value: 2 / (1+) 

– We seek more structured mechanisms that have similar score 
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Example for 
 = 0.9 



Explicit Fair Mechanism EM  

 We construct a new  ‘explicit fair mechanism’ (uniform diagonal): 
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 Each column is a permutation of the same set of values 

 Additionally has column and row monotonicity, symmetry 

 This is an optimal fair mechanism:  

 Entries in middle column are all as small as DP will allow 

 Hence y cannot be bigger 

 Cost slightly higher than Geometric Mechanism 



Summary of mechanisms 

 Based on relations between properties, we can conclude:  
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 Fair Mechanism (EM) and 
Geometric Mechanism 
(GM) have explicit forms 

 Weak Mechanism (WM) 
found by solving LP with 
weak honesty constraint 



Comparing Mechanisms 

 Heatmaps comparing mechanisms for  = 0.9, n=4 
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L0 score behaviour 

 L0 score varies as a function of n and  

– WM  converges on GM for n  2 / (1-) 
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Performance on real data 

 Using UCI Adult data set of demographic data 

– Construct small groups in the data, target different binary attributes 

– Compute Root-Mean-Squared Error of per-group outputs 

– EM and WM generally preferable for wide range of  values  
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Summary 

 Carefully crafted mechanisms for data release perform well 
on small groups 

 Many more natural questions for small groups and local DP 

 Lots of technical work left to do:  

– Structured data: other statistics, graphs, movement patterns 

– Unstructured data: text, images, video? 

– Develop standards for (certain kinds of) data release 
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