String Edit Distance Matching Problem with Moves

Graham Cormode, S. Muthukrishnan grahamc@dcs.warwick.ac.uk muthu@research.att.com

Pattern Matching

Text T

length n
Pattern P

We want to find good matches of P in T as measured by $\mathrm{d}(-,-)$ where d is some string edit distance.

General setting: for each i, find

$$
\mathrm{D}[i]=\min _{j} \mathrm{~d}(\mathrm{~T}[i: j], \mathrm{P})
$$

Pattern Matching Problems

Hamming distance in time

$$
\begin{aligned}
& \mathrm{O}\left(n m^{1 / 2}\right) \\
& \mathrm{O}\left(1 / \varepsilon^{2} n \log ^{3} n\right) \\
& \mathrm{O}\left(1 / \varepsilon^{2} n \log n\right)
\end{aligned}
$$

Abrahamson 87
Karloff 93 ($1+\varepsilon$ approx)
Indyk 98 ($1+\varepsilon$ approx)
Edit distance in time

$$
\mathrm{O}(\mathrm{~nm}) \quad \text { Dynamic Programing }
$$

Other solutions parametrized by k (largest distance) still have $\mathrm{O}(\mathrm{nm})$ worst case perfomance in general

We want $\mathrm{o}(\mathrm{nm})$ time solutions, ideally close to $\mathrm{O}(n)$.

Our results

We make a simplification, and allow approximations of each $\mathrm{D}[i]$
We will study the string edit distance with moves:
$d(X, Y)=$ smallest number of following operations to turn X into Y

- insert a character
- delete a character
- replace a character
- move a substring

Substring moves are relevant to many situations, eg
Computational Biology, Text Editing, Web Page updates etc.
We will find each $\mathrm{D}[i]$ up to a factor of $\mathrm{O}(\log n \log * n)$

Main Features

- Embed the string distance into the L_{1} vector distance, up to a $\mathrm{O}\left(\log n \log ^{*} n\right)$ factor
- Compute this vector embedding quickly with a single pass over the string
- Quickly find the representation for any substring of T
- Only need to consider $\mathrm{O}(n)$ substrings
- Solve the whole problem approximately but deterministically in time $\mathrm{O}(n \log n)$

Parsing for the Embedding

The embedding is based on parsing strings in a deterministic way
We parse the strings in a way so that edit operations have only a limited effect on the parsing - this will allow us to make the approximation.

Find 'landmarks' in the string based only on their locality.

- Repetitions (aaa) are easily identifiable landmarks
- Local maxima are good landmarks in varying sequences, but may be far apart - so reduce the alphabet to ensure landmarks occur often enough.

Procedure: Isolate repetitions, leaving substrings with no repeats.

Alphabet Reduction

Write each character as a bitstring ie $\mathrm{a}=00000, \mathrm{~b}=00001$
Reduce the alphabet. For each character, find a new label as:
Smallest bit location where it differs from its left neighbor

+ Bit value there

e.g.	Char	b	d	a
	Binary	00001	00011	00000
Location	-	001	000	
	Label	-	0011	0000

Alphabet Reduction

If the starting alphabet is Σ, the new alphabet has $2 \log |\Sigma|$ values
Repeat the procedure on the string iteratively until the alphabet is size $6, \Sigma^{\prime}=\{0,1,2,3,4,5\}$

Then reduce from 6 to 3, ensuring no adjacent pair are identical (first remove all 5 s , then all 4 s , then all 3 s)

Properties of the final labels:

- Final alphabet is $\{0,1,2\}$
- No adjacent pair is identical
- Takes $\log ^{*}|\Sigma|$ iterations
- Each label depends on the $\mathrm{O}\left(\log ^{*}|\Sigma|\right)$ characters to its left

Marking characters

Consider the final labels, and mark certain characters:

- Mark any labels that are local maxima (greater than left \& right)
- Also mark any local minima if not adjacent to a marked char.

Clearly, no two adjacent characters are marked. Also, successive marked labels are separated by at most two labels

Labels - 010001000011010001000011010011
Final - $\begin{array}{lllllllllll}\underline{2} & 1 & \underline{0} & > & \underline{2} & 1 & \underline{0} & \text { § } & 1 & \underline{2} & >\end{array}$

Group into pairs and triples

Now, whole string can be arranged into pairs and triples:

- For repeats, parse in a regular way aaaaaaa $=>(a a a)(a a)(a a)$
- For varying substrings, use alphabet reduction, define pairs and triples based on the marked characters.

Text											
Final	c	a	b	a	g	e	f	a	c	e	d
	$\underline{2}$	1	$\underline{0}$	1	$\underline{2}$	1	$\underline{0}$	1	$\underline{2}$	0	

Relabel each pair or triple - can do this deterministically, building a dictionary of labels using Karp-Miller-Rosenberg labelling.

The parsing of each character depends on a $\log * \mathrm{n}+\mathrm{c}$ neighborhood

Build Hierarchical Structure

Given the new labels, repeat the process... this builds a 2-3 tree

Can be constructed in time $\mathrm{O}\left(n \log ^{*} n\right)$

Vector Representation

From this structure, derive a vector representation V recording the frequency of occurrence of each (level, label) pair:

$(0, \mathrm{a})$	$(0, \mathrm{~b})$	$(0, \mathrm{c})$	$(0, \mathrm{~d})$	$(0, \mathrm{e})$	$(0, \mathrm{f})$	$(0, \mathrm{~g})$	$\left(0, _\right)$
8	7	1	4	6	1	4	5

$(1,2)$	$(1,3)$	$(1,6)$	$(1,7)$	$(1,8)$	$(1,10)$	$(1,12)$	$(1,14)$	$(1,16)$	$(1,20)$	$(1,21)$
2	1	1	1	1	1	2	1	3	1	2

$(2,5)$	$(2,7)$	$(2,10)$	$(2,13)$	$(2,17)$	$(2,20)$	$(3,3)$	$(3,15)$	$(3,23)$	$(4,10)$
1	1	1	2	1	1	1	1	1	1

Theorem: ${ }^{1 ⁄ 2} \mathrm{~d}(\mathrm{X}, \mathrm{Y}) \leq\|\mathrm{V}(\mathrm{X})-\mathrm{V}(\mathrm{Y})\|_{1} \leq \mathrm{O}\left(\log n \log ^{*} n\right) \mathrm{d}(\mathrm{X}, \mathrm{Y})$

Upper bound

$$
\|\mathrm{V}(\mathrm{X})-\mathrm{V}(\mathrm{Y})\|_{1} \leq \mathrm{O}\left(\log n \log ^{*} n\right) \mathrm{d}(\mathrm{X}, \mathrm{Y})
$$

Consider the effect of each permitted edit operation:

- Insert / change / delete a character:

Fairly straightforward, at most $\log ^{*} n$ nodes can change per level

- Move a substring:

Within the substring, there are no changes.
At the fringes, only $\mathrm{O}\left(\log ^{*} n\right)$ nodes change per level
As each operation changes V by $\mathrm{O}\left(\log n \log ^{*} n\right)$, so $\|\mathrm{V}(\mathrm{X})-\mathrm{V}(\mathrm{Y})\|_{1} / \mathrm{O}\left(\log n \log ^{*} n\right) \leq \mathrm{d}(\mathrm{X}, \mathrm{Y})$

Hence the bound holds.

Lower bound

A constructive proof: we give an algorithm to transform X into Y using at most $2\|\mathrm{~V}(\mathrm{X})-\mathrm{V}(\mathrm{Y})\|_{1}$ operations.

We want to make sure we keep hold of large pieces of the string that are common to both X and Y , so we will go through and protect enough pieces of X that will be needed in Y , and we avoid changing these in the manipulation.

Then we will go through level by level to turn X into Y :

- At the bottom, we add or remove characters as needed.
- For each subsequent level, proceed inductively:

Assume we have enough nodes of the level below. Then to make any node we only need to move at most 2 nodes from the level below.

Application to String Matching

To find $\mathrm{D}[i]$, we need to compare every substring of T against P - this is $\mathrm{O}\left(n^{2}\right)$. We reduce this to $\mathrm{O}(n)$ substrings.

$$
\begin{array}{r}
\mathrm{d}(\mathrm{~T}[l: l+m-1], \mathrm{P}) \leq \mathrm{d}(\mathrm{~T}[l: l+m-1], \mathrm{T}[l: r])+\mathrm{d}(\mathrm{~T}[l: r], \mathrm{P}) \\
\text { by triangle inequality } \\
=|(r-l+1)-m|+\mathrm{d}(\mathrm{~T}[l: r], \mathrm{P})
\end{array}
$$

$|(r-l+1)-m| \leq \mathrm{d}(\mathrm{T}[l: r], \mathrm{P})$ since we need at least $|(r-l+1)-m|$ operations to make $\mathrm{T}[l: r]$ the same length as P . So

$$
\mathrm{d}(\mathrm{~T}[l: l+m-1], \mathrm{P}) \leq 2 \mathrm{~d}(\mathrm{~T}[l: r], \mathrm{P})
$$

So we only need to consider the $\mathrm{O}(n)$ substrings of length m and this will be a 2-approximation of the optimal matching.

Final algorithm

By construction, a subtree of an ESP tree induced by any substring has the same properties: the L_{1} distance of the vector embedding approximates the edit distance with moves.

String matching algorithm:

- Create a naming function for T and P using

Karp-Miller-Rosenberg Labelling.

- Compute parse trees for T and P
- Find $\| \mathrm{V}(\mathrm{T}[1: m])$ - $\mathrm{V}(\mathrm{P}) \|_{1}$
- Iteratively compute $\mathrm{D}[i] \approx\|\mathrm{V}(\mathrm{T}[i: i+m-1])-\mathrm{V}(\mathrm{P})\|_{1}$

Overall cost is $\mathrm{O}(n \log n)$ for the whole algorithm.

Conclusion

Advantages of this embedding approach:

- General: applicable to many other problems eg Approximate Nearest Neighbor, Clustering
- Easy to compute, can be made probabilistically in
the streaming model
Disadvantages of this solution:
- Large approximation factor
- Does not obviously extend to Levenshtein edit distance

Open problems: remedy these disadvantages!

