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Text T

Pattern P

Pattern Matching

D000 0%

length n

We want to find good matches of P in T as measured by d(-,-)
where d 1s some string edit distance.

General setting: for each i, find

D[] = min, d(TT[iy/],P)



Pattern Matching Problems

Hamming distance in time

O(nm!?) Abrahamson 87
O(1/€? n log? n) Karloff 93 (1 + € approx)
O(1/€? n log n) Indyk 98 (1 + € approx)

Edit distance 1n time

O(nm) Dynamic Programing
Other solutions parametrized by & (largest distance) still
have O(nm) worst case perfomance in general

We want o(nm) time solutions, ideally close to O(n).



Our results

We make a simplification, and allow approximations of each D[]
We will study the string edit distance with moves:

d(X,Y)= smallest number of following operations to turn X into Y
e insert a character
e delete a character
e replace a character
* move a substring

Substring moves are relevant to many situations, eg
Computational Biology, Text Editing, Web Page updates etc.

We will find each DJ[i] up to a factor of O(log n log*n)



Main Features

* Embed the string distance into the L, vector distance,
up to a O(log n log™ n) factor

« Compute this vector embedding quickly with a single
pass over the string

 Quickly find the representation for any substring of T
* Only need to consider O(n) substrings

* Solve the whole problem approximately but
deterministically in time O(n log n)



Parsing for the Embedding

The embedding 1s based on parsing strings in a deterministic way

We parse the strings in a way so that edit operations have only a
limited effect on the parsing — this will allow us to make the
approximation.

Find ‘landmarks’ in the string based only on their locality.
» Repetitions (aaa) are easily identifiable landmarks

 Local maxima are good landmarks in varying sequences, but
may be far apart — so reduce the alphabet to ensure landmarks
occur often enough.

Procedure: Isolate repetitions, leaving substrings with no repeats.



Alphabet Reduction

Write each character as a bitstring 1€ a = 00000, b = 00001

Reduce the alphabet. For each character, find a new label as:
Smallest bit location where 1t differs from its left neighbor
+ Bit value there

e.g. Char b d a
Binary 00001 00011 00000
Location - 001 000

Label - 0011 0000



Alphabet Reduction

If the starting alphabet 1s 2, the new alphabet has 2 log |X| values

Repeat the procedure on the string iteratively until the alphabet
1s size 6, X" = {0,1,2,3,4,5}

Then reduce from 6 to 3, ensuring no adjacent pair are 1dentical
(first remove all 5s, then all 4s, then all 3s)

Properties of the final labels:
* Final alphabet 1s {0,1,2}
 No adjacent pair 1s identical
 Takes log™ 2| iterations
 Each label depends on the O(log™ |X|) characters to its left



Marking characters

Consider the final labels, and mark certain characters:
* Mark any labels that are local maxima (greater than left & right)
 Also mark any local minima if not adjacent to a marked char.

Clearly, no two adjacent characters are marked.
Also, successive marked labels are separated by at most two labels

Text c a b a g e f a ¢ e d
Labels - 010 001 000 011 010 001 000 011 010 O11
Final - 2 1 0%1 2 1 0%1 230



Group 1nto pairs and triples

Now, whole string can be arranged 1nto pairs and triples:
 For repeats, parse in a regular way aaaaaaa => (aaa)(aa)(aa)

* For varying substrings, use alphabet reduction, define pairs
and triples based on the marked characters.

Text | ¢ a|lb a|l g el f a|c e d

Final |- 21 O( 1 2(1 O]1 2 O

Relabel each pair or triple — can do this deterministically, building
a dictionary of labels using Karp-Miller-Rosenberg labelling.

The parsing of each character depends on a log*n + ¢ neighborhood



Build Hierarchical Structure

Given the new labels, repeat the process... this builds a 2-3 tree

Level) B A BB AGE DEBAGGED CABBAGE DEBA

vvwvvvvvav”vvvv YAV

Level ] 3 12 16 21 4 6 12 16 21
Level 2 17 13 7 5 10 20 13
Level 3 23 15 3

10

Can be constructed in time O(n log*n)



Vector Representation

From this structure, derive a vector representation V recording

the frequency of occurrence of each (level, label) pair:
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Theorem: 12d(X,Y) < || V(X) - V(Y) ||, £ O(log n log*n) d(X,Y)




Upper bound

I V(X) - V(Y) [l < O(log n log™ n) d(X,Y)
Consider the effect of each permitted edit operation:
e Insert / change / delete a character:

Fairly straightforward, at most log” n nodes can
change per level

* Move a substring:
Within the substring, there are no changes.
At the fringes, only O(log" n) nodes change per level

As each operation changes V by O(log n log™ n), so
IV(X) - V(Y)||; / O(log n log™ n) < d(X,Y)

Hence the bound holds.



[L.ower bound

A constructive proof: we give an algorithm to transform X
into Y using at most 2||V(X) - V(Y)||, operations.

We want to make sure we keep hold of large pieces of the
string that are common to both X and Y, so we will go
through and protect enough pieces of X that will be needed
in Y, and we avoid changing these in the manipulation.

Then we will go through level by level to turn X into Y:

» At the bottom, we add or remove characters as needed.
 For each subsequent level, proceed inductively:
Assume we have enough nodes of the level below.
Then to make any node we only need to move at most
2 nodes from the level below. 4



Application to String Matching

To find D[i], we need to compare every substring of T against P
— this is O(#?). We reduce this to O(n) substrings.

d(T[l:Hm-1],P) < d(T[l:Hm-1],T[L:r]) + d(T[/:7],P)
by triangle inequality

=|(r-1+1)-m|+d(T[/:r],P)

(7 - [+ 1) - m| <d(T[/l:r], P) since we need at least |(#-/+1) - m)|
operations to make T[/:r] the same length as P. So

d(T[l:[+m-1],P) < 2d(T[/:r],P)

So we only need to consider the O(n) substrings of length m and
this will be a 2-approximation of the optimal matching.



Final algorithm

By construction, a subtree of an ESP tree induced by any
substring has the same properties: the L, distance of the vector
embedding approximates the edit distance with moves.

String matching algorithm:

* Create a naming function for T and P using
Karp-Miller-Rosenberg Labelling.

* Compute parse trees for T and P

+ Find [V(T[L:m]) - VP,

e [teratively compute D[] = ||V(T[i:i+m-1]) - V(P)||,

Overall cost is O(n log n) for the whole algorithm.
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Conclusion

Advantages of this embedding approach:
 General: applicable to many other problems
eg Approximate Nearest Neighbor, Clustering
» Easy to compute, can be made probabilistically in
the streaming model

Disadvantages of this solution:
 Large approximation factor
* Does not obviously extend to Levenshtein edit distance

Open problems: remedy these disadvantages!



