
String Edit Distance Matching
Problem with Moves

Graham Cormode, S. Muthukrishnan
grahamc@dcs.warwick.ac.uk

muthu@research.att.com

Pattern Matching

Text T

Pattern P

length n

length m

We want to find good matches of P in T as measured by d(-,-)
where d is some string edit distance.

General setting: for each i, find

D[i] = minj d(T[i:j],P)

Pattern Matching Problems
Hamming distance in time

O(nm1/2) Abrahamson 87
O(1/ε2 n log3 n) Karloff 93 (1 + ε approx)
O(1/ε2 n log n) Indyk 98 (1 + ε approx)

Edit distance in time
O(nm) Dynamic Programing

Other solutions parametrized by k (largest distance) still
have O(nm) worst case perfomance in general

We want o(nm) time solutions, ideally close to O(n).

Our results
We make a simplification, and allow approximations of each D[i]

We will study the string edit distance with moves:

d(X,Y)= smallest number of following operations to turn X into Y
• insert a character
• delete a character
• replace a character
• move a substring

Substring moves are relevant to many situations, eg
Computational Biology, Text Editing, Web Page updates etc.

We will find each D[i] up to a factor of O(log n log*n)

Main Features
• Embed the string distance into the L1 vector distance,
up to a O(log n log* n) factor

• Compute this vector embedding quickly with a single
pass over the string

• Quickly find the representation for any substring of T

• Only need to consider O(n) substrings

• Solve the whole problem approximately but
deterministically in time O(n log n)

Parsing for the Embedding
The embedding is based on parsing strings in a deterministic way

We parse the strings in a way so that edit operations have only a
limited effect on the parsing — this will allow us to make the
approximation.

Find ‘landmarks’ in the string based only on their locality.

• Repetitions (aaa) are easily identifiable landmarks

• Local maxima are good landmarks in varying sequences, but
may be far apart — so reduce the alphabet to ensure landmarks
occur often enough.

Procedure: Isolate repetitions, leaving substrings with no repeats.

Alphabet Reduction

Write each character as a bitstring ie a = 00000, b = 00001

Reduce the alphabet. For each character, find a new label as:
Smallest bit location where it differs from its left neighbor
+ Bit value there

Char b d a
Binary 00001 00011 00000
Location - 001 000
Label - 0011 0000

e.g.

Alphabet Reduction
If the starting alphabet is Σ, the new alphabet has 2 log |Σ| values

Repeat the procedure on the string iteratively until the alphabet
is size 6, Σ` = {0,1,2,3,4,5}

Then reduce from 6 to 3, ensuring no adjacent pair are identical
(first remove all 5s, then all 4s, then all 3s)

Properties of the final labels:
• Final alphabet is {0,1,2}
• No adjacent pair is identical
• Takes log* |Σ| iterations
• Each label depends on the O(log* |Σ|) characters to its left

Marking characters

Consider the final labels, and mark certain characters:
• Mark any labels that are local maxima (greater than left & right)
• Also mark any local minima if not adjacent to a marked char.

Clearly, no two adjacent characters are marked.
Also, successive marked labels are separated by at most two labels

Text c a b a g e f a c e d

Labels - 010 001 000 011 010 001 000 011 010 011

Final - 2 1 0 3 1 2 1 0 3 1 2 3 0

Group into pairs and triples
Now, whole string can be arranged into pairs and triples:
• For repeats, parse in a regular way aaaaaaa => (aaa)(aa)(aa)
• For varying substrings, use alphabet reduction, define pairs
and triples based on the marked characters.

Text c a b a g e f a c e d

Final - 2 1 0 1 2 1 0 1 2 0

Relabel each pair or triple — can do this deterministically, building
a dictionary of labels using Karp-Miller-Rosenberg labelling.

The parsing of each character depends on a log*n + c neighborhood

Build Hierarchical Structure
Given the new labels, repeat the process… this builds a 2-3 tree

B A B B A G E _ D E B A G G E D _ A _ D E A F _ C A B B A G E _ D E B A

 3 12 2 16 21 8 7 20 16 10 14 6 12 2 16 21

17 13 7 5 10 20 13

23 15 3

10

Can be constructed in time O(n log*n)

Level 0

Level 1

Level 2

Level 3

Level 4

Vector Representation
From this structure, derive a vector representation V recording
the frequency of occurrence of each (level, label) pair:

(0,a) (0,b) (0,c) (0,d) (0,e) (0,f) (0,g) (0,_)

 8 7 1 4 6 1 4 5

(1,2) (1,3) (1,6) (1,7) (1,8) (1,10) (1,12) (1,14) (1,16) (1,20) (1,21)

 2 1 1 1 1 1 2 1 3 1 2

(2,5) (2,7) (2,10) (2,13) (2,17) (2,20) (3,3) (3,15) (3,23) (4,10)

 1 1 1 2 1 1 1 1 1 1

Theorem: ½d(X,Y) ≤ || V(X) - V(Y) ||1 ≤ O(log n log*n) d(X,Y)

Upper bound
|| V(X) - V(Y) ||1 ≤ O(log n log* n) d(X,Y)

Consider the effect of each permitted edit operation:

• Insert / change / delete a character:
 Fairly straightforward, at most log* n nodes can
change per level

• Move a substring:
 Within the substring, there are no changes.
 At the fringes, only O(log* n) nodes change per level

As each operation changes V by O(log n log* n), so
||V(X) - V(Y)||1 / O(log n log* n) ≤ d(X,Y)

Hence the bound holds.

Lower bound
A constructive proof: we give an algorithm to transform X
into Y using at most 2||V(X) - V(Y)||1 operations.

We want to make sure we keep hold of large pieces of the
string that are common to both X and Y, so we will go
through and protect enough pieces of X that will be needed
in Y, and we avoid changing these in the manipulation.

Then we will go through level by level to turn X into Y:

• At the bottom, we add or remove characters as needed.
• For each subsequent level, proceed inductively:

 Assume we have enough nodes of the level below.
Then to make any node we only need to move at most
2 nodes from the level below.

Application to String Matching
To find D[i], we need to compare every substring of T against P
— this is O(n2). We reduce this to O(n) substrings.

d(T[l:l+m-1],P) ≤ d(T[l:l+m-1],T[l:r]) + d(T[l:r],P)
 by triangle inequality

= |(r - l + 1) - m| + d(T[l:r],P)

|(r - l + 1) - m| ≤ d(T[l:r], P) since we need at least |(r-l+1) - m|
operations to make T[l:r] the same length as P. So

d(T[l:l+m-1],P) ≤ 2d(T[l:r],P)

So we only need to consider the O(n) substrings of length m and
this will be a 2-approximation of the optimal matching.

Final algorithm
By construction, a subtree of an ESP tree induced by any
substring has the same properties: the L1 distance of the vector
embedding approximates the edit distance with moves.

String matching algorithm:

• Create a naming function for T and P using
Karp-Miller-Rosenberg Labelling.

• Compute parse trees for T and P
• Find ||V(T[1:m]) - V(P)||1
• Iteratively compute D[i] ≈ ||V(T[i:i+m-1]) - V(P)||1

Overall cost is O(n log n) for the whole algorithm.

B A B B A G E _ D E B A G G E D _ A _ D E A F _ C A B B A G E _ D E B A

 3 12 2 16 A 8 7 20 16 10 F 6 12 2 16 21

17 A 7 5 14 20 13

19 19 3

21

B A B B A G E _ D E B A G G E D _ A _ D E A F _ C A B B A G E _ D E B A

 3 12 2 16 21 8 7 20 16 10 14 6 12 2 16 21

17 13 7 5 10 20 13

11 15 3

14

Conclusion

Advantages of this embedding approach:
• General: applicable to many other problems

eg Approximate Nearest Neighbor, Clustering
• Easy to compute, can be made probabilistically in

the streaming model

Disadvantages of this solution:
• Large approximation factor
• Does not obviously extend to Levenshtein edit distance

Open problems: remedy these disadvantages!

