Streaming Algorithms for Matching Size in Sparse Graphs Graham Cormode

g.cormode@warwick.ac.uk

Joint work with

S. Muthukrishnan (Rutgers), Morteza Monemizadeh (Rutgers → Amazon) Hossein Jowhari (Warwick → K. N. Toosi U. of Technology)

Big Graphs

- Increasingly many "big" graphs:
 - Internet/web graph (2⁶⁴ possible edges)
 - Online social networks (10¹¹ edges)
- Many natural problems on big graphs:
 - Connectivity/reachability/distance between nodes
 - Summarization/sparsification
 - Traditional optimization goals: vertex cover, maximal matching
- Various models for handling big graphs:
 - Parallel (BSP/MapReduce): store and process the whole graph
 - Sampling: try to capture a subset of nodes/edges
 - Streaming (this work): seek a compact summary of the graph

Streaming graph model

- The "you get one chance" model:
 - Vertex set [n] known, see each edge only once
 - Space used must be sublinear in the size of the input
 - Analyze costs (time to process each edge, accuracy of answer)
- Variations within the model:
 - See each edge exactly once or at least once?
 - Assume exactly once, this assumption can be removed
 - Insertions only, or edges added and deleted?
 - How sublinear is the space?
 - Semi-streaming: linear in n (nodes) but sublinear in m (edges)
 - "Strictly streaming": sublinear in n, polynomial or logarithmic
- Many problems "hard" (space lower bounds) for graph streaming

Streaming Matching

- Aim to find a matching for the input graph
 - Subgraph with maximum degree 1
- Easy linear space 2-approximation in insert-only
 - Just greedily construct a matching, O(n) space
- We seek to approximate the size of the matching in o(n) space
 - Kapralov, Khanna, Sudan, SODA'14: O(poly log n) approx in
 O(poly log n) space, assuming random order of arrivals
 - Esfandiari et al., SODA'15 : O(c) approximation in O(c n^{2/3}) space, assuming graph has c-bounded arboricity
 - Bury and C. Schwiegelshohn, ESA'15: Weighted graphs
 - McGregor and Vorotnikova, APPROX'16: Improved constant factors

Matching under sparsity

- Many graphs (phone, web, social) are 'sparse'
 - Asymptotically fewer than O(n²) edges
- Characterize sparsity by bounded arboricity c
 - Edges can be partitioned into at most c forests
 - Equivalent to the largest local density, |E(U)|/(|U|-1) for $U \subseteq V$
 - E(U) is the number of edges in the subgraph induced by U
 - E.g. planarity corresponds to 3-bounded arboricity
- Use structural properties of graph streams to give results
 - Improved poly. space algorithm for matching with deletions
 - First polylog space algorithm for matching with inserts only

α -Goodness

- Define an edge in a stream to be α-good if neither of its endpoints appears more than α times in the suffix of the input
 - Intuition: This definition sparsifies the graph but approximately preserves the matching
- The number of α -good edges approximates the matching size
 - Edges on low degree nodes are already α-good
 - Every high degree node has at most α +1 α -good edges
 - Estimating the number of α -good edges is easier than finding the matching itself

Edge is 1-good if at most 1 edge on each endpoint arrives later

Easy case: trees (c=1)

- Consider a tree T with maximum matching size M*
- $|E_1| \le 2M^*$: The subgraph E_1 has degree at most 2, no cycles
 - So can make a matching for T from E_1 using at least half the edges
- $|E_1| \ge M^*$: Proof by induction on number of nodes n
 - Base case: n=2 is trivial
 - Inductive case: add an edge (somewhere in the stream) that connects a new leaf to an existing node
 - Either M* and |E₁| stay the same, or |E₁| increases by 1 and M* increases by at most 1
 - At most 1 edge is ejected from E_1 , but the new edge replaces it

General case

- Upper bound: $|E_{6c}| \le (22.5c + 6)/3 \text{ M}^*$
 - E_{α} has degree at most α +1, and invoke a bound on M* [Han 08]
- Lower bound: $M^* \leq 3|E_{6c}|$
 - Break nodes into low L and high degree H classes (as before)
 - Relate the size of a maximum matching to number of high degree nodes plus edges with both ends low degree
 - Define HH: the nodes in H that only link to others in H
 - There must still be plenty of these by a counting argument
 - Use bounded arboricity to argue that half the nodes in HH have degree less than 6c (averaging argument)
 - These must all have a 6c-good edge (not too many neighbors)
- Combine these to conclude $M^* \le 3|E_{6c}| \le (22.5c + 6)M^*$

Testing edges for α -Goodness

- To estimate matching size, count number of α-good edges
- Follow a sampling strategy similar to L₀ sampling
 - Uniformly sample an edge (u, v) from the stream (easy to do)
 - Count number of subsequent edges incident on u and v
 - Terminate procedure if more than α incident edges
- Need to sample many times in parallel to get result
 - Sample rate too low: no edges found are α -good
 - Sample rate too high: space too high
 - But we can drop the instances that fail

Goldilocks effect: We can find a sample rate that is just right

And bound the space of the over-sampling instances

Parallel guessing

- Make parallel guesses of sampling rates p_i
 - Run $1/\epsilon \log n$ guesses with sampling rates $p_i = (1+\epsilon)^{-i}$
 - Terminate level i if more than $O(\alpha \log (n)/\epsilon^2)$ guesses are active
- Estimate: Use lowest non-terminated level to make estimate
- Correctness: there is a 'good' level that will not be terminated
 - E_{α} not monotone! Might go up and down as we see more edges
 - But the matching size only increases as the stream goes on
 - Use the previous analysis relating E_{α} to matching size to bound
 - Also argue that using other levels to estimate is OK
- Result: use $O(c/\epsilon^2 \log n)$ space to O(c) approximate M*

Matching with deletions

- We assume not too many deletions: bounded by O(αn)
- Our algorithm samples nodes into a set T with probability p
- In parallel as insertions/deletions of edges arrive, maintain:
 - 1. The induced subgraph on T
 - 2. The cut edges between T and degrees of neighbors of T
 - 3. A matching of size at most 1/p
- Via arboricity assumption, nodes have expected degree O(α)
- Matching (3) maintained via randomized algorithm in space O(p⁻²)
- Result: Balancing the space costs sets p = n^{-1/3}, total space O(n^{2/3})
 - Estimate matching size by #high degree nodes + #low degree edges
 - Maintained statistics are sufficient to $O(\alpha^2)$ approximate matching size based on number of surviving high degree nodes

Open Problems

- Work in progress: improve constants and simplify analysis [McGregor and Vorotnikova: connection to fractional matchings]
- Extensions to the parallel/distributed case
 - Obstacle: α-good definition seems inherently centralized
- Other notions of structure/sparsity beyond arboricity?
- Extend to the weighted matching case: some recent results here
- Connections between the streaming and online models?
- Cardinality estimation for other graph problems, e.g.:
 - Maximum Independent Set
 - Dominating Set

Thank you!