Compact Summaries for Large Datasets Big Data

Graham Cormode

University of Warwick G.Cormode@Warwick.ac.uk

The case for "Big Data" in one slide

- "Big" data arises in many forms:
 - Medical data: genetic sequences, time series
 - Activity data: GPS location, social network activity
 - Business data: customer behavior tracking at fine detail
 - Physical Measurements: from science (physics, astronomy)
- Common themes:
 - Data is large, and growing
 - There are important patterns and trends in the data
 - We don't fully know how to find them
- "Big data" is about more than simply the volume of the data
 - But large datasets present a particular challenge for us!

Computational scalability

- The first (prevailing) approach: scale up the computation
- Many great technical ideas:
 - Use many cheap commodity devices
 - Accept and tolerate failure
 - Move data to code, not vice-versa
 - MapReduce: BSP for programmers
 - Break problem into many small pieces
 - Add layers of abstraction to build massive DBMSs and warehouses
 - Decide which constraints to drop: noSQL, BASE systems
- Scaling up comes with its disadvantages:
 - Expensive (hardware, equipment, energy), still not always fast
- This talk is not about this approach!

Downsizing data

A second approach to computational scalability: scale down the data!

- A compact representation of a large data set
- Capable of being analyzed on a single machine
- What we finally want is small: human readable analysis / decisions
- Necessarily gives up some accuracy: approximate answers
- Often randomized (small constant probability of error)
- Much relevant work: samples, histograms, wavelet transforms
- Complementary to the first approach: not a case of either-or
- Some drawbacks:
 - Not a general purpose approach: need to fit the problem
 - Some computations don't allow any useful summary

Outline for the talk

Some examples of compact summaries (high level, no proofs)

- Sketches: Bloom filter, Count-Min, AMS
- Sampling: simple samples, count distinct
- Summaries for more complex objects: graphs and matrices
- Lower bounds: limitations of when summaries can exist
 - No free lunch
- Current trends and future challenges for compact summaries
- Many abbreviations and omissions (histograms, wavelets, ...)
- A lot of work relevant to compact summaries
 - Including many papers in SIGMOD/PODS

Summary Construction

There are several different models for summary construction

- Offline computation: e.g. sort data, take percentiles
- **Streaming**: summary merged with one new item each step
- Full mergeability: allow arbitrary merges of partial summaries
 - The most general and widely applicable category
- Key methods for summaries:
 - Create an empty summary
 - Update with one new tuple: streaming processing
 - Merge summaries together: distributed processing (eg MapR)
 - Query: may tolerate some approximation (parameterized by ε)
- Several important cost metrics (as function of ε, n):
 - Size of summary, time cost of each operation

Bloom Filters

Bloom filters [Bloom 1970] compactly encode set membership

- E.g. store a list of many long URLs compactly
- k hash functions map items to m-bit vector k times
- Set all k entries to 1 to indicate item is present
- Can lookup items, store set of size n in O(n) bits

Analysis: choose k and size m to obtain small false positive prob

Duplicate insertions do not change Bloom filters

Can be merge by OR-ing vectors (of same size)

Compact Summaries for Big Data

Bloom Filters Applications

- Bloom Filters widely used in "big data" applications
 - Many problems require storing a large set of items
- Can generalize to allow deletions
 - Swap bits for counters: increment on insert, decrement on delete
 - If representing sets, small counters suffice: 4 bits per counter
 - If representing multisets, obtain (counting) sketches
- Bloom Filters are an active research area
 - Several papers on topic in every networking conference...

Count-Min Sketch

- Count Min sketch [C, Muthukrishnan 04] encodes item counts
 - Allows estimation of frequencies (e.g. for selectivity estimation)
 - Some similarities in appearance to Bloom filters
- Model input data as a vector x of dimension U
 - Create a small summary as an array of $\mathbf{w} \times \mathbf{d}$ in size
 - Use d hash function to map vector entries to [1..w]

Count-Min Sketch Structure

- Each entry in vector x is mapped to one bucket per row.
- Merge two sketches by entry-wise summation
- Estimate x[j] by taking min_k CM[k,h_k(j)]
 - Guarantees error less than $\varepsilon ||x||_1$ in size $O(1/\varepsilon)$
 - Probability of more error reduced by adding more rows

Generalization: Sketch Structures

Sketch is a class of summary that is a linear transform of input

- Sketch(x) = Sx for some matrix S
- Hence, Sketch($\alpha x + \beta y$) = α Sketch(x) + β Sketch(y)
- Trivial to update and merge
- Often describe S in terms of hash functions
 - S must have compact description to be worthwhile
 - If hash functions are simple, sketch is fast
- Analysis relies on properties of the hash functions
 - Seek "limited independence" to limit space usage
 - Proofs usually study the expectation and variance of the estimates

Sketching for Euclidean norm

- AMS sketch presented in [Alon Matias Szegedy 96]
 - Allows estimation of F₂ (second frequency moment)
 - Leads to estimation of (self) join sizes, inner products
 - Used at the heart of many streaming and non-streaming applications achieves dimensionality reduction ('Johnson-Lindenstrauss lemma')
- Here, describe (fast) AMS sketch by generalizing CM sketch
 - − Use extra hash functions $g_1...g_d \{1...U\} \rightarrow \{+1,-1\}$
 - Now, given update (j,+c), set $CM[k,h_k(j)] += c^*g_k(j)$
- Estimate squared Euclidean norm $(F_2) = \text{median}_k \sum_i CM[k,i]^2$
 - Intuition: gk hash values cause 'cross-terms' to cancel out, on average

+c*a√())

t+c*<u>g₃(j</u>)

+c^{*}g₂()

₩C^{*}g₄(j)

h₁(j

 $h_d(j)$

j,+C

- The analysis formalizes this intuition
- median reduces chance of large error

Application to Large Scale Machine Learning

- In machine learning, often have very large feature space
 - Many objects, each with huge, sparse feature vectors
 - Slow and costly to work in the full feature space
- "Hash kernels": work with a sketch of the features
 - Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg '09]
- Similar analysis explains why:
 - Essentially, not too much noise on the important features

Min-wise Sampling

Fundamental problem: sample m items uniformly from data

- Allows evaluation of query on sample for approximate answer
- Challenge: don't know how large total input is, so how to set rate?
- For each item, pick a random fraction between 0 and 1
- Store item(s) with the smallest random tag [Nath et al.'04]

- Each item has same chance of least tag, so uniform
 - Leads to an intuitive proof of correctness
- Can run on multiple inputs separately, then merge

F₀ Estimation

F₀ is the number of distinct items in the data

- A fundamental quantity with many applications
- COUNT DISTINCT estimation in DBMS
- Application: track online advertising views
 - Want to know how many distinct viewers have been reached
- Early approximate summary due to Flajolet and Martin [1983]
- Will describe a generalized version of the FM summary due to Bar-Yossef et. al with only pairwise indendence
 - Known as the "k-Minimum values (KMV)" algorithm

KMV F₀ estimation algorithm

- Let m be the domain of data elements
 - Each item in data is from [1...m]
- Pick a random (pairwise) hash function h: $[m] \rightarrow [R]$
 - For R "large enough" (polynomial), assume no collisions under h

- Keep the t distinct items achieving the smallest values of h(i)
 - Note: if same i is seen many times, h(i) is same
 - Let v_t = t'th smallest (distinct) value of h(i) seen
- If $n = F_0 < t$, give exact answer, else estimate $F'_0 = tR/v_t$
 - $v_t/R \approx$ fraction of hash domain occupied by t smallest
 - Analysis sets t = $1/\epsilon^2$ to give ϵ relative error

Engineering Count Distinct

Hyperloglog algorithm [Flajolet Fusy Gandouet Meunier 07]

- Hash each item to one of $1/\epsilon^2$ buckets (like Count-Min)
- In each bucket, track the function $\max \lfloor \log(h(x)) \rfloor$
 - Can view as a coarsened version of KMV
 - Space efficient: need $\log \log m \approx 6$ bits per bucket
- Take harmonic mean of estimates from each bucket
 - Analysis much more involved
- Can estimate intersections between sketches
 - Make use of identity $|A \cap B| = |A| + |B| |A \cup B|$
 - Error scales with $\varepsilon \sqrt{(|A||B|)}$, so poor for small intersections
 - Lower bound implies should **not** estimate intersections well!
 - Higher order intersections via inclusion-exclusion principle

L₀ Sampling

- L_0 sampling: sample item i with prob $(1\pm\epsilon) f_i^0/F_0$
 - i.e., sample (near) uniformly from items with non-zero frequency
 - Challenging when frequencies can increase and decrease
- General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]
 - Sub-sample all items (present or not) with probability p
 - Generate a sub-sampled vector of frequencies f_p
 - Feed f_p to a k-sparse recovery data structure (summary)
 - Allows reconstruction of f_p if $F_0 < k$, uses space O(k)
 - If f_p is k-sparse, sample from reconstructed vector
 - Repeat in parallel for exponentially shrinking values of p

Sampling Process

Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16... 1/U

- Want there to be a level where k-sparse recovery will succeed
 - Sub-sketch that can decode a vector if it has few non-zeros
- At level p, expected number of items selected S is pF_0
- Pick level p so that $k/3 < pF_0 \le 2k/3$

Analysis: this is very likely to succeed and sample correctly

Graph Sketching

- Given L₀ sampler, use to sketch (undirected) graph properties
- Connectivity: want to test if there is a path between all pairs
- Basic alg: repeatedly contract edges between components
 - Implement: Use L₀ sampling to get edges from vector of adjacencies
 - One sketch for the adjacency list for each node
- Problem: as components grow, sampling edges from components most likely to produce internal links

Graph Sketching

- Idea: use clever encoding of edges [Ahn, Guha, McGregor 12]
- Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i
- When node i and node j get merged, sum their L₀ sketches
 - Contribution of edge (i,j) exactly cancels out

- Only non-internal edges remain in the L₀ sketches
- Use independent sketches for each iteration of the algorithm
 - Only need O(log n) rounds with high probability
- Result: O(poly-log n) space per node for connectivity

Other Graph Results via sketching

Recent flurry of activity in summaries for graph problems

- K-connectivity via connectivity
- Bipartiteness via connectivity:
- (Weight of the) Minimum spanning tree:
- Sparsification: find G' with few edges so that $cut(G,C) \approx cut(G',C)$
- Matching: find a maximal matching (assuming it is small)
- Cost is typical O(|V|), rather than O(|E|)
 - Semi-streaming / semi-external model

Matrix Sketching

Given matrices A, B, want to approximate matrix product AB

- Measure the normed error of approximation C: ||AB C||
- Main results for the Frobenius (entrywise) norm ||·||_F
 - $\|\mathbf{C}\|_{\mathsf{F}} = (\sum_{i,j} \mathbf{C}_{i,j}^{2})^{\frac{1}{2}}$
 - Results rely on sketches, so this entrywise norm is most natural

Direct Application of Sketches

- Build AMS sketch of each row of A (A_i), each column of B (B^j)
- Estimate C_{i,i} by estimating inner product of A_i with B^j
 - Absolute error in estimate is $\varepsilon \|A_i\|_2 \|B^j\|_2$ (whp)
 - Sum over all entries in matrix, squared error is $\varepsilon \|A\|_{F} \|B\|_{F}$
- Outline formalized & improved by Clarkson & Woodruff [09,13]
 - Improve running time to linear in number of non-zeros in A,B

Compressed Matrix Multiplication

- What if we are just interested in the large entries of AB?
 - Or, the ability to estimate any entry of (AB)
 - Arises in recommender systems, other ML applications
- If we had a sketch of (AB), could find these approximately
- Compressed Matrix Multiplication [Pagh 12]:
 - Can we compute sketch(AB) from sketch(A) and sketch(B)?
 - To do this, need to dive into structure of the Count (AMS) sketch
- Several insights needed to build the method:
 - Express matrix product as summation of outer products
 - Take convolution of sketches to get a sketch of outer product
 - New hash function enables this to proceed
 - Use the FFT to speed up from O(w²) to O(w log w)

More Linear Algebra

- Matrix multiplication improvement: use more powerful hash fns
 - Obtain a single accurate estimate with high probability
- Linear regression given matrix A and vector b: find x ∈ R^d to (approximately) solve min_x ||Ax − b||
 - Approach: solve the minimization in "sketch space"
 - From a summary of size $O(d^2/\epsilon)$ [independent of rows of A]
- Frequent directions: approximate matrix-vector product [Ghashami, Liberty, Phillips, Woodruff 15]
 - Use the SVD to (incrementally) summarize matrices
- The relevant sketches can be built quickly: proportional to the number of nonzeros in the matrices (input sparsity)
 - Survey: Sketching as a tool for linear algebra [Woodruff 14]

Lower Bounds

While there are many examples of things we can summarize...

- What about things we can't do?
- What's the **best** we could achieve for things we can do?
- Lower bounds for summaries from communication complexity
 - Treat the summary as a **message** that can be sent between players
- Basic principle: summaries must be proportional to the size of the information they carry
 - A summary encoding N bits of data must be at least N bits in size!

Summary of Lower Bounds

- Some fundamental hard problems:
 - Can't retrieve arbitrary bits from a vector of n bits: INDEX
 - Can't determine whether two n bit vectors intersect: DISJ
 - Can't distinguish small differences in Hamming distance:
 GAP-HAMMING
- These in turn provide lower bounds on the cost of
 - Finding the maximum count (can't do this exactly in small space)
 - Approximating the number of distinct items (need $1/\epsilon^2$, not $1/\epsilon$)
 - Graph connectivity (can't do better than |V|)
 - Approximating matrix multiplication (can't get relative error)

Current Directions in Data Summarization

- Sparse representations of high dimensional objects
 - Compressed sensing, sparse fast fourier transform
- General purpose numerical linear algebra for (large) matrices
 - k-rank approximation, linear regression, PCA, SVD, eigenvalues
- Summaries to verify full calculation: a 'checksum for computation'
- Geometric (big) data: coresets, clustering, machine learning
- Use of summaries in large-scale, distributed computation
 - Build them in MapReduce, Continuous Distributed models
- Communication-efficient maintenance of summaries
 - As the (distributed) input is modified

Summary of Summaries

Two complementary approaches in response to growing data sizes

- Scale the computation up; scale the data down
- The theory and practice of data summarization has many guises
 - Sampling theory (since the start of statistics)
 - Streaming algorithms in computer science
 - Compressive sampling, dimensionality reduction... (maths, stats, CS)
- Continuing interest in applying and developing new theory
 - Ad: Postdoc & PhD studentships available at U of Warwick

Engineering and Physical Sciences Research Council Microsoft Research Council Research

European Research Council

Established by the European Commission

Compact Summaries for Big Data