
Comparing Data
Streams Using

Hamming Norms

Graham Cormode,
Mayur Datar,
Piotr Indyk,

S. Muthukrishnan
graham@cormode.org

2

Data Streams

Data streams occur everywhere:

• Network streams

- IP packet flow records, phone call records

• Environmental observations

- Weather readings, other sensor values

• Other streams of values

- Web clickstreams, stock values…

3

Streams from IP Networks

Many network flows between (source, dest) pairs

Want a snapshot at time t of the flows

This defines a (massive) vector, and we ask:

• Summarise the current state

• How does state at time t compare with at t’?

• Which past situation does this most resemble, etc.?

4

Processing Constraints

Network devices have small memory, limited processing
power

Want solutions which have fast per-item processing, minimal
memory requirements

Backtracking on the input is impossible without explicitly
storing it

Informally the “datastream” model of computation

5

How to measure streams?

The state at any time defines a massive vector

• Hamming norm: Σ (xi ≠ 0)

 Number of non-zero entries of the vector

• Union Size: Σ (xi + yi ≠ 0)

• Hamming difference: Σ ((xi - yi) ≠ 0) = Σ (xi ≠ yi)

This is the number of places where the vectors differ - a
fundamental concept.

6

Hamming Norm for
Counting Distinct Values

Application 1: Maintaining number of distinct values in a
relation with inserts and deletes

Important to know number of values for query optimization,
approximate query answering, join size estimation etc.

Fully dynamic case, with inserts and deletes: sampling has been
shown to be inaccurate.

The Hamming Norm of the stream of updates gives the
number of distinct values.

7

Application to Networks

Application 2: Many questions possible about network
streams:

• How many packet flows between distinct pairs of
(source, destination)?

• How many flows are losing packets (where packets in
one side of network not equal to packets out)?

• Denial of service attacks signalled by large numbers of
requests (from spoofed IPs) — so many distinct sources.

All these can be solved by computing Hamming norms.

8

Our approach

An exact answer is not possible in small space, so we find an
approximate answer with probability guarantees.

We will use statistical distributions with provable properties.

Assume an general form of a data stream:

• Pairs (i, j) arrive (meaning “add j to location i”)

• The total of values xi is bounded |xi| < U for some U.

We will create a small summarizing “sketch” for the stream
that allows Hamming Norm, Difference and Union to be
approximated.

9

Hamming Norm
of a Stream

Vectors are assumed to be massive, too large to store
explicitly. Entries are updated dynamically:

(5,+3), (2, -1), (3, +2), (7, +9), (5, -2), (6, -1), (6, -3), (2, +1),
(4, +2), (3, -2), (7, -5), (5, +2), (6, -2), (4, -3), (5, -1)

1 2 3 4 5 6 7 8

0 0 0 -1 2 -3 4 0

Hamming norm of the stream is 4 (4 non-zero entries)

10

Zeroing in on the
Hamming Norm

We can approximate the Hamming norm by finding the
Lp norm to the power p for small enough p

Hamming norm of vector a is |a|H = Σ |ai|0

where 00 defined = 0

Lp norm of a vector is (Σ |ai|p)1/p

|a|H = Σ |ai|0 ≤ Σ |ai|p ≤ Σ Up |ai|0 ≤ Up Σ |a|H

Setting Up = (1+ε) means |a|H ≤ Σ |ai|p ≤ (1+ε) |a|H

This fixes p = ε / log U, allowing us to approximate the
Hamming Norm

11

Finding Lp norm
Relies on results from Indyk ‘00 on Stable Distributions:

We can use Stable distributions to approximate the Lp norm:

Fact: if Xi ~ Stable(p, 0) then Σi ai Xi ~ (Σ|ai
p|)1/p Stable(p,0)

Create vector x where each entry is drawn from Stable(p,0)

Compute |âH| = Σ ai xi — this quantity has the correct
expectation

Can be computed on the stream: with each update (i, j),
then update |âH| ← |âH| + jxi

12

Guaranteed Accuracy

One estimate is not accurate (variance is high), so repeat
several times independently: keep k copies based on
independent drawings of the vector x.

Store the values of âH in a short L0 sketch, sk[1…k].

Find mediani(|sk[i]|), and scale by median(|Stable(p,0)|) = m.

Fix k = O(1/ε2 log 1/δ). Then

(1-ε) |a|H ≤ median(sk)/m ≤ (1+ε)2 |a|H with probability 1-δ

13

Implementation Details

Don’t store x explicitly — it would take too much space.

Instead, compute each xi as a pseudo-random function of i
(so use a pseudo-random number generator, initialized by
i), and known methods to generate values from Stable
Distributions from uniform distributions.

Also need to compute |median(Stable(p,0))| in advance —
can do this empirically or numerically.

14

Properties

Space usage is small: the L0 sketch consists of
 O(1/ε2 log 1/δ) counters

Time per item is to update each counter, O(1/ε2 log 1/δ)

Difference and union of streams is easy to compute:

sk(a + b) = sk(a) + sk(b)

sk(a - b) = sk(a) - sk(b)

by linearity of dot product, so can approximate |a - b|H
and |a + b|H with the same accuracy.

15

Complete Algorithm

initialize sk[1…k] = 0.0
for all for all for all for all tuples (i,j) dodododo
 initialize random with i
 for for for for s = 1 to to to to k dodododo
 r1 = random(); r2 = random()
 sk[s] = sk[s]+j*stable(r1,r2,p)

for for for for s = 1 to to to to k dodododo
 sk[s] = absolute(sk[s])p

return median(sk)*scalefactor(p)

Simple to implement, can run quickly with small space

16

Experimental Evaluation

Data Sets

• Generated synthetic data from Zipf distributions with a
range of parameters

• Took real Netflow data from one of AT&T’s networks

• Each data stream was around 20Mb, working space was
around a few Kb.

Parameters We fixed p = 0.02 (as small as possible),
this sets the scale factor, median(|Stable(0.02,0)|) =
1.425

17

Existing Techniques

Compared against the “probabilistic counting” algorithm
of Flajolet and Martin

+ Uses a similar amount of space

+ Operates in the data stream model

+ Fast per-item processing

 – Can’t cope with all situations (eg negative values)

 – Can’t find the difference between two streams

18

Hamming Norm Tests

• Performance of our algorithm is better than FM85

• Improves with more workspace

• Slightly slower in practice

19

• Shows that FM85 can’t cope when values are allowed to be
negative, but L0 sketches retain their accuracy.

20

• Good performance (~7% error), small memory cost

• Performance of finding union of streams (not shown) also good.

21

Conclusions

We give a new technique for data stream analysis

Can approximate the Hamming norm, Number of Distinct
Items, Hamming difference with only a few kb of space

Suitable for indexing streams

The “L0 sketch” can be used as a surrogate for the stream in
other computations: clustering, searching, querying, all based
only on the sketches

