
Tracking Frequent
Items Dynamically:

”What’s Hot and What’s Not”

Graham Cormode
graham@dimacs.rutgers.edu
dimacs.rutgers.edu/~graham

S. Muthukrishnan
muthu@cs.rutgers.edu

Outline

• Problem definition and lower bounds

• Finding Heavy Hitters via Group Testing

– Finding a simple majority

– Non-adaptive Group Testing

– Experimental Evaluation

• Extensions and Conclusions

Motivating Problems
• DBMSs need to track attribute values that

occur frequently in a column for query plan
optimization, approximate query answering.

• Network managers want to know users
using large quantities of bandwidth as
connections are set up and torn down, for
charging, tuning, detecting problems or
abuse.

• Many other problems can be modeled as
tracking frequent items in a dynamic setting.

Scenario

• Data arrives as sequence of updates: inserts
and deletes in Database, SYN and ACK in
networks, start and end call in telecoms

• Model state as an (implicit) vector a[1..n]

• On insert of i, add 1 to a[i], on delete of i
decrement a[i]

• Only interested in “hot” entries a[i]> φ||a||1
• Easy for a small enough domain: challenge is

from large domains: eg IP addresses n= 232

Previous Work

Many solutions for insertions only, old and new:

• In Algorithms: Boyer, Moore 82, Misra, Gries
82, Demaine, LopezOrtiz, Munro 02, Charikar,
Chen, Farach-Colton 02

• In Databases: Fang, Shivakumar, Garcia-
Molina, Motwani, Ullman 98, Manku,
Motwani 02, Karp, Papadimitriou, Shenker 03

• In Networks: Estan, Varghese 02

…but (almost) nothing with deletions

Difficulty of Deletions

• Suppose we keep some currently hot
items and their counts: these could all get
deleted next.

• Need to recover newly hot items.
Eg φ = 0.2, from millions of items, all but
4 are deleted – need to find these four.

• Can’t backtrack on the past without
explicitly storing the whole sequence:
backing sample will help, but not much...

Our solutions
• Escape lower bounds using probability and

approximation.

• Our solution is based on (non-adaptive)
Group Testing

• Some prior work did this kind of thing, but
requires heavy duty sketches, large poly in
log n time and space (eg top wavelet
coefficients [Gilbert Guha Indyk Kotidis
Muthukrishnan Strauss 02])

Outline

• Problem definition and lower bounds

• Finding Heavy Hitters via Group Testing

– Finding a simple majority

– Non-adaptive Group Testing

– Experimental Evaluation

• Extensions and Conclusions

Non-adaptive Group Testing
Special case: φ = ½. At most 1 item a[i]>½ ||a||1
Assume there is such an item when we query,

how to find it?

Formulate as a group testing problem.

Arrange items 1..n into (overlapping) groups,
keep counts: every time an item from a group
arrives, increment group’s count, decrement
for departures. Also keep count of all items.

Test: Is the count of the group > ½ ||a||1 ?

Weighing up the odds

If there is an item with weighing over half the total
weight, it will always be in the heavier pan...

Log Groups

• Keep log n groups, one for each bit position

• If j’th bit of i is 1, put item i is group j

• Can read off index of majority item

• log n bits clearly necessary, get 1 bit from
each counter comparison.

• Order of insertions and deletions doesn’t
matter, since addition/subtraction commute

Outline

• Problem definition and lower bounds

• Finding Heavy Hitters via Group Testing

– Finding a simple majority

– Non-adaptive Group Testing

– Experimental Evaluation

• Extensions and Conclusions

Group Testing

Want to extend this approach to arbitrary φ
− want to find up to k = 1/ φ items

Need a construction of groups so can use
“weight” tests to find hot items.

There are deterministic group constructions
which use superimposed codes of order k

These are too costly to decode: need to
consider n codewords, and n is large

Randomized Construction

• Use randomized group construction
(with limited randomness)

• Idea: generate groups randomly which have
at most 1 hot item in whp

• If one hot item and little else in a group, then
it is majority, use majority method to find it.

• Need to reason about false positives
(reporting infrequent items) and false
negatives (missing hot items)

Multiple Buckets

Multiple buckets spread the weight out:

• Hot items are unlikely to collide

• Isn’t too much weight from other items

So, there’s a good chance that each hot item will
be in the majority for its bucket

Randomized Construction

• Partition universe uniformly randomly to
c/φ groups, c > 1

• Include item i in group j with probability φ/c

• Repeat enough times, each hot item is a
majority in its group in some partition with
high probability

• Storing description of groups explicitly is
too expensive, so define groups by hash
functions: but how strong hash functions?

Small space construction

• Pairwise independent hash function suffices,
and these are easy to compute with.

• Range of hash fn is 2/φ, defines 2/φ groups,
group j holds all items i such that h(i)=j

• Use log 1/(φδ) hash functions to get prob of
success = 1-δ

• In each group keep log n counters as before
so can find the majority of items in group

Data Structure
i

h1(i) h2(i) h log 1/(φδ) (i)

2/φ

log n
...

Space used is (2/φ)*log (n)*log(1/(φδ))

Easy to update counts for inserts, deletes

Search Procedure
If group count is > φ ||a||1 assume hot item is

in there, and search subgroups

For each of log n splits, reject some bad cases:
• if both halves of the split > φ||a||1, could be

2 hot items in the same set, so abort

• if both halves of the split < φ||a||1, cannot be
hot item in the set, so abort

• Else, find index of candidate hot item

Avoiding False Positives
Some danger of including an infrequent item

in the output, so for each candidate:

• check the candidate hashes to the group
that produced that candidate

• check each group it is in to ensure every
one passes threshold.

Together these will guarantee chance of false
positive is small.

Recap
• Find heavy items using Group Testing

• Spread items out into groups using hash fns

• If there is 1 hot item and little else in a
group, it is majority, find using log groups

• Want to analyze probability each hot item
lands in such a group (so no false negatives)

• Can also bound probability of false positives,
but skipped for this talk.

Probability of Success
For each hot item, can identify if its group does

not contain much additional weight.

That is, if total other weight ≤ φ ||a||1 it is majority

By pairwise independence, linearity of
expectation, expected weight in same bucket:

E(wt) ≤ Σ a[i]φ/2 ≤ φ||a||1/2

By Markov inequality, Pr[wt > φ ||a||1] < ½

So constant probability of success.
Repeat for log 1/(φδ) hash functions, gives
probability 1 – δ every hot item is in output

Time and Space Costs
• Update cost: Compute log 1/(φδ) hash

functions, update log(n) log 1/(φδ) counters

• Space is small: 2/φ log(n) log 1/(φδ) counts,
decoding requires a linear scan of counts.

• Bonus: can specify φ’ > φ at query time

• Results do not depend on order of updates

Outline

• Problem definition and lower bounds

• Finding Heavy Hitters via Group Testing

– Finding a simple majority

– Non-adaptive Group Testing

– Experimental Evaluation

• Extensions and Conclusions

Experiments
Wanted to test the recall and precision of

the different methods

Recall = % of frequent items found

Precision = % of found items frequent

A relatively small experiment... processed a
few million phone calls (from one day)

Compared to algorithms for inserts only,
modified to handle deletions heuristically.

Recall
Recall on Real Data

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Number of Transactions / 10^6

R
ec

al
l

Group Testing Lossy Counting Frequent

Precision
Precision on Real Data

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Number of Transactions / 10^6

Pr
ec

is
io

n

Group Testing Lossy Counting Frequent

Outline

• Problem definition and lower bounds

• Finding Heavy Hitters via Group Testing

– Finding a simple majority

– Non-adaptive Group Testing

– Experimental Evaluation

• Extensions and Conclusions

Conclusions
• The result is a pretty fast, pretty simple

solution: just keep counts.

• Sketch based solutions are more costly,
both in O() and in constants: here size is
around a few hundred Kb.

• Seems to work well in practice.

Extensions in Progress
• An adaptive group testing solution, with

slightly improved guarantees and costs (as a
tech report)

• Finding hot items in hierarchies (with Korn
and Srivastava, VLDB 03)

• Find large abolute or relative changes in
item counts (eg between yesterday and
today): conceptually, hot items relative to a
vector of differences (in progress)

Open Problems
• Deterministic solutions exist for inserts

only, is randomness necessary here?

• What if data is multidimensional: what are
hot items here, and how to find them?

• In some sense hot items are “anomalies”,
but are they really anomolous? Are
anomalies always hot items?

