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Conduction anisotropy in layered semiconductors
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We present a simple theoretical model for the diffusion of free carriers in layered semiconducting
compounds, for which a small concentration of dopants (guest layers) disturb the system conduc-
tance, resulting in a strong anisotropy across and along the layers, which depends on the temperature
of the system, as well as on the barrier lowering caused by the applied voltage. This model is based
on diffusion via random walks of free particles, with the guest layers acting as barriers hindering
free motion. By considering the probability of overcoming the barriers, we derive a formula for the
current in terms of the guest concentration, barrier height, and temperature. Experimental results
from previous studies for the system ZnIn&S4..Zn&In&SS concerning the anisotropic conductivity, its
temperature and voltage dependence, as well as computer simulations are in excellent agreement
with this model.

In layered semiconducting compounds the electrical
conductivity perpendicular to the layers is often severely
influenced either by a slipping of successive layers with
respect to each other, or by the presence of layers which
have a difFerent stoichiometry than the host compound. ~

These planar defects are termed compositional faults. In
Fig. 1 such a case is shown with guest layers presented
by thick planes between the layers of the host compound,
which are presented by thin planes. The guest layers gen-
erally possess a difFerent structure than the host planes.
Therefore, the lattice periodicity is disturbed along the
z axis, and they act as potential barriers, limiting the
motion of the free carriers in the space between them.
Such a schematic is given in Fig. 2, with the guest layers
shown as barriers. The barriers are characterized by their
height H and thickness b. Electrical conductivity in the
range of moderate and high temperatures is achieved by
thermal activation of the free carriers, i.e., carriers pos-
sessing a thermal energy higher than H can overcome the
barriers, thus contributing to the electrical conductivity.
In the low temperature region, almost all carriers can
be considered as "&ozen," i.e., they do not have enough
thermal energy to overcome the barriers. In this case, the
main mechanism to pass through these barriers is quan-
tum mechanical tunneling. The main difFerence between
these two mechanisms is that tunneling does not depend
on the temperature T, while thermal activation depends

exponentially on T. In the low temperature region, where
only tunneling contributes to the electrical conductivity,
a significant anisotropy ratio o, of the conductivities 0~
and rr~~ across and along (perpendicular and parallel) the
layers has been observed. 2 Here o. is defined as the ratio
CT~~ /CTg

In the case of the layered semiconductor ZnIn2S4,
which includes compositional faults in the form of guest
layers Zn~In2S5, the anisotropy ratio o; has been esti-
mated to have a value of 10, and to be, at low tem-
peratures, temperature independent. In order to mea-
sure the conductivity cr~ a voltage V has to be applied
on the upper and lower surfaces of the crystals. This
voltage mainly drops on the N potential barriers formed
by the compositional faults, because they represent the
high resistivity regions of the crystal, consequently low-
ering the barrier height by an amount V/N. For small
applied voltages this lowering is negligible, but for mod-
erate and high applied voltages the lowering leads to a
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FIG. 1. Compositional faults (thick planes) between the
ordinary layers (thin planes) of the host compound. Note
that the lattice periodicity is severely disturbed along the z
mls.

FIG. 2. Potential barriers created by the N stoichiometric
faults (guest layers), with a thickness h and height H. For an
applied voltage V the lowering of each barrier corresponds toV¹
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considerable raise of the conductivity sr~, thus decreas-
ing the anisotropy ratio a. In the moderate and high
temperature region more and more &ee carriers gain the
required thermal energy to pass over the barriers. When
the mean thermal energy approaches the barrier height
H almost all carriers contribute to the conductivity o.~.
When this happens the anisotropy ratio o. approaches
unity.

In the present work, we prese~t a procedure to estimate
the anisotropy ratio a, its dependence on the tempera-
ture T, and 6nally, the inQuence of the applied voltage
V on n. Moreover, with this model we can predict the I-
V characteristic of the crystal, doped with the impurity.
We consider that the undisturbed host layers (between
successive potential barriers formed by the compositional
faults) act as traps for the Bee carriers, which, for sim-
plicity, are supposed to be &ee electrons. Only the car-
riers that have enough thermal energy to overcome the
barriers are considered capable of contributing to the con-
ductivity of the semiconductor along the z axis. Since the
guest layers are randomly distributed in the crystal, our
model also assumes a random distribution of the barriers.

The experimental data obtained in the past2 for the
case of the layered semiconductor ZnIn2S4 containing sto-
ichiometric faults (i.e., Znqln2Ss layers) between its host
layers can be summarized as follows.

(i) In the low temperature region the anisotropy ratio
a has a temperature independent value of about 10 . As
the voltage increases the anisotropy ratio o, decreases, as
shown in Fig. 3 (circles).

(ii) In the high temperature region the anisotropy ratio
o. depends exponentially on the temperature T, decreas-
ing with increasing T, and for k~T values approaching
the barrier height H the anisotropy ratio o. approaches a
constant value. 2

(iii) The I Vcharacteri-stic of the semiconductor is a
straight line for small values of the applied voltage V,

but its slope shows an abrupt increase for high values of
V (Fig. 4, circles).

Similar experimental results have been reported for the
case of other layered compounds. In the following
we will try to interpret the above results using a simple
di8'usion model of the carriers performing random walk
motion. Thus, the structure of the compound is repre-
sented by a three dimensional lattice. Random layers of
this lattice along the z axis are designated as barriers,
with concentration c. These barriers represent the com-
positional faults. A large number of particles, typically of
the order of 104, with randomly chosen initial positions,
disuse on this lattice via symmetric random walks. In
practice, only the coordinates in the z axis are moni-
tored, and in essence the problem is a one-dimensional
one. When a particle encounters a barrier it has a prob-
ability p to pass over the barrier, which depends on the
height of the energy barrier H, the applied voltage per
barrier V/N, and the temperature T, while it has a prob-
ability 1 —p to remain on the same site. The probabil-
ity p is given by a Boltzmann factor e @/~~+, where
E = H —(V/N) is the height of the barrier after the
lowering caused by the applied voltage.

During a walk of n steps, a particle succeeds to over-
come a barrier ng times. The number of the successful
passes ng is monitored as a function of the total steps
(time) n,. In this way, we estimate the number of carri-
ers that contribute to the conductivity of the crystal in
the perpendicular direction (a~). To estimate the quan-
tity ng, we observe that after a walk of n steps, a particle
meets nc barriers. Since it has a probability p = e
to overcome these barriers we conclude that

Several curves based on Eq. (1) are shown in Fig. 5 (full
lines) for different values of E/Ic~T. The symbols in this
6gure are results of simulation calculations after averag-
ing over 10 independent walks. A much larger number
of walks, of the order of 10, were used for the 6rst 100
steps, for low values of the ratio E/kgT (lower lines in
Fig. 5), due to large Huctuations in this region. The up-
per line in the 6gure corresponds to ng ——n, i.e., the case
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FIG. 3. Log-log plot of the measured (circles) and theoret-
ically predicted (full line) anisotropy ratio n as a function of
the applied voltage V/N (lower x axis), and as a function of
[H (V/N)]/k~T (upper —z axis, dotted line). The experimen-
tally measured points are for the ZnIn&S4. Zn2In2S5 system.
Note that for H —(V/N) kI3T the shift d approaches a
constant value, of about 35.
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FIG. 4. The I-V characteristic of the compound. The
open circles in this plot represent the experimentally mea-
sured points for the ZnIn&S4. Zn&In&S5 system, vtrhile the full
line is the theoretically predicted from Eq. (6).
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FIG. 5. Log-log plot of the number of successful passes ng
as a function of the total number of steps n, with E/kgyT as
a parameter, for the following values of E/ksT: 0, 1, 3, 5, 7,
and 10, respectively (top to bottom). For these calculations
a concentration of c = 3 x 10 eras used. The lines represent
the behavior predicted by Eq. (1), and the symbols are results
of computer simulations.

E
d = inn —lnnb —— —inc.

kgT (2)

The shift d represents in fact the logarithm of the
anisotropy ratio n, since by de6nition

nbepb

lna = inn —lnnb+ ln —,P
Pb

(4)

where p, represents the mobility of the carriers for zero
barrier height, and pb is the mobility of the carriers
for a crystal which contains barriers. The mobility is
known to be, in general, structure dependent. Thus,

that there are no barriers and all carriers contribute to
the conductivity of the crystal. This is considered as the
"reference" line. The other lines have a horizontal shift
d from this line, and we observe that d is getting larger
as the ratio E/k~T increases.

When E/k~T = 0, then ns practically is equal to n
(slope of 1), because either E is very low or k&T is large,
thus enabling all &ee carriers to contribute to 0~. As the
exponent E/k~T grows larger the ns —n lines shift to
the right by an amount d. This deviation d corresponds
to the anisotropy ratio n measured at low temperatures.

It is now simple to calculate the shift d of the lines of
Fig. 5, using Eq. (1). d is found to be a function of
E/k~T and c, i.e.,

Va=A —,I' (5)

where A is a constant taking care of the proper units.
Thus, using Eq. (2), we can convert the o; —V curve
(Fig. 4) to an I Vcharacteri-stic by use of the following
equation:

i(V/N —H )
kgT (6)

The predicted I Vcharacterist-ic of the crystal, Eq. (6),
is in excellent aggreement with the experimentally mea-
sured characteristic as shown in Fig. 4.

Summarizing, we have shown that a simple random
walk model in a system where the guest layers act as
barriers can adequately explain the strong conductivity
anisotropy that had been repeatedly observed experimen-
tally in the past, both in the case of ZnIn2S4. Zn2In2S5
examined in the present report, as well as in the very sim-
ilar cases of ZnqIn2S5. ZnIn2S4, Zn3In2S6. Zn2In2S5, and
Zn5In2S8. Zn2In2S5. Zn3In2S6. The anisotropy ratio n
can be easily derived, as a function of both the applied
voltage and the system temperature.

the ratio p, /ps represents the structure induced mobil-
ity anisotropy. Since the concentration of barriers in the
crystal is indicative of the structure of the crystal the
term in(p/pq) will correspond to the term —inc of Eq.
(2). In Fig. 3 a is plotted as a function of V/N (full line)
and also as a function of E/k~T (dotted line). Both
lines are based on Eq. (2). The points are the results of
the experimental measurements. Note that for E/k~T
equal or less than unity (in other words the thermal en-

ergy of the carriers is equal to or higher than the barrier
height) the anisotropy ratio n does not equal unity, but
rather tends to a constant value. This discrepancy can
be explained in terms of the mobility anisotropy, which
as seen from Eqs. (2) and (4), always adds a constant
background value to n, of the order of 10—100, as already
reported. ~

From Fig. 3, where n is plotted as a function of E/k~T
we can make the following conclusions:

(a) Considering T constant, the rapid decrease of a at
E/k~T 1 is caused by the corresponding lowering of
0 due to the deformation of the potential barriers by the
applied voltage.

(b) Considering H constant, this decrease of [H—
(V/N))/kgyT 1 is due to the gain of sufBcient thermal
energy by the &ee carriers to overcome the barriers.

Since we are interested in the dependence of the
anisotropy ratio on the applied voltage, we can consider
that a measure of the anisotropy ratio is the resistance
of the crystal at a speci6c value of voltage, i.e.,
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