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Distribution of the number of distinct sites visited by random walks in disordered
lattices
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The distributions of the number of distinct sites S visited by random walks of n steps in
the infinite cluster of two-dimensional lattices at the percolation threshold are studied. Different
lattice sizes, different origins of the walks, and different realizations of the disorder are investigated
by Monte Carlo simulations. The distribution of the mean values of (S„) appears to have self-

averaging features. The probability distribution of the normalized values of (S„) is investigated
with respect to its multifractal behavior. The distributions of the probabilities p($ ) for fixed S„
are presented and analyzed. These distributions are wide and their moments show behavior that
cannot be characterized by multifractal scaling exponents.

PACS number(s): 05.40.+j, 66.30.Jt

I. INTRODUCTION

In this paper we investigate some properties of the
distributions of the number of sites that are visited by
random walks in lattices at the percolation threshold.
The infinite cluster of accessible sites in lattices with ran-
domly blocked sites is a fractal at the percolation thresh-
old. Consequently, the mean number of distinct sites
visited by random walks shows a power-law dependence
on the step number [1]. In particular we ask whether
the distributions of the number of distinct sites visited
exhibit multi&actal features. In the multi&actal analy-
sis the structure of the probability distributions them-
selves are of interest [2], for instance, their dependence
on length scales, or the magnitude of the fI.uctuations be-
tween different realizations of the disorder. With regard
to the number S of visited sites, we can investigate the
structure of the distribution for different lattice sizes, for
difFerent starting sites of the random walks in a particular
realization of the infinite cluster, and for different real-
izations of the infinite cluster. These points are discussed
in this paper.

Multi&actal properties of random walks in percolation
lattices were already investigated by Bunde, Havlin, and
Roman [3] who studied the probability distribution of the
displacements R of particles. Especially they considered
the distributions of the probability distribution, for fixed
distance R and step number n. They were able to predict
multi&actal properties of these distributions by compar-
ing them with simpler models, and they confirmed the
ensuing scaling predictions by numerical methods. We
wish to point out why we think it is worthwhile to also
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undertake a study of the multi&actal features of the dis-
tributions of S„. The number S of distinct sites visited
is a quantity that is different &om the displacements of
a random walk. It is related to the first-passage times
of the walk to the lattice points. The distance B of a
walk belongs to the class of properties that are associated
with the mean-square displacement. The mean number
(9 ) of distinct sites visited, and the mean-square dis-
placement (B ) have quite different properties in the in-
finite percolation cluster. While the power-law behavior
of (R2) is described by the random-walk exponent d~ [4],
the behavior of (S ) with the number of steps n is deter-
mined by the spectral dimension ots [5]. The difficulty of
studying the distribution of S is that no useful simple
models are known for predicting the scaling behavior of
the distributions, and that the exact enumeration tech-
nique is not applicable.

In addition to the analysis of the probability distribu-
tions of S, which is analogous to the analysis of Bunde
et al. [3] we also investigate the properties of the distri-
butions of S by box-counting methods, as considered by
Halsey et al. [6]. Such methods are quite natural to study,
e.g. , strange sets in turbulence [7] and in chaotic systems
[8]. One application of the box-counting method to a
first-passage time problem was made recently by Murthy
et aL [9]. We extend this method to the study of the
distribution of the values of S in different realizations
of the random walks.

By using two different methods of investigating pos-
sible multi&actal properties of a particular quantity, we
also want to contribute to a better understanding of the
concept of multi&actality, when applied to disordered
condensed-matter systems. Systems with quenched dis-
order are quite difFerent from some of the model systems
that are studied in this context, and the interpretation of
multi&actality and its consequences for observable prop-
erties are still not well understood.
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II. THE MODEL

Two-dimensional simple-square lat tices are considered,
in which some sites are randomly blocked and thus inac-
cessible. The concentration of open, accessible, sites is
designated by p. This model represents the well-known
percolation problem [10]. For small values of p and large
lattices the clusters of open sites are not connected, while
for large p there exists an "infinite cluster" of open sites
which connects sites at different boundaries of arbitrar-
ily large lattices. A well defined critical point separates
the two regimes; for the simple-square lattice the critical
point is located at p = 0.5931. The critical point is of
special significance, as physical quantities show scaling
behavior at or near this point, and the infinite cluster
has &actal properties.

To investigate random-walk properties in this model,
a particle is placed at random on an open site of the
lattice and it makes transitions to open neighbor sites.
We consider discrete random walks where the number of
steps n is counted. We adopt the "blind-ant" convention
of counting also attempted transitions [10]. If the particle
attempts to make a transition to a blocked site, it is not
allowed to do so, but the number of steps is increased by
one.

The prescription of placing a particle initially on a
open site of the lattice at the percolation threshold has
to be explained in detail. The critical behavior of the
mean-square displacement (B2) and of the mean number
of distinct sites visited, (S„), is different, depending on
whether an average is done over walks of the particle in
the infinite cluster only, or whether the average includes
all clusters of open sites [4,5]. In the first case, the start-
ing point of the particle is always chosen in the infinite
cluster, in the second case the starting point is an arbi-
trary open site. We study the first case, i.e., we consider
only walks in the infinite cluster of the percolating lattice.

Lattices of several difFerent sizes were used, ranging
from 100 x 100 up to 750 x 750. Sites were selected ran-
domly with probability 1 —p and designated as blocked
sites. At the percolation threshold p, the "infinite clus-
ter" of open sites was constructed by the cluster multiple-
labeling technique [11]. After preparing the disordered
lattice, a particle is placed randomly on an open site
of the infinite cluster, and allowed to perform a random
walk. The number of visited sites S is monitored as func-
tion of the step number n.

III. DETERMINATION OF THE DISTRIBUTION
OF S„

In this paper we are concerned with the different be-
havior of random-walk quantities in the difFerent real-
izations of the disorder. These may be implemented by
choosing difFerent starting points of the random walks,
or by creating different realizations of the infinite cluster
at the percolation threshold. We first consider random
walks that start exactly at the same point of the per-
colation cluster, for one realization of the disorder. We
perform NR~ random walks with a fixed number n of

steps that start at the saxne origin and estimate the dis-
tribution p(S„) of the number of distinct sites visited. We
also deterinine the mean value (S ) of distinct sites vis-
ited for this realization of the disorder. We then choose
another origin and determine a second distribution p(S )
and the mean value (S„)by performing again NRvv ran-
dom walks that start exactly at the second origin. We
repeat the procedure of determining different distribu-
tions p(S„) and values of (S„) for W selections of a dif-
ferent origin. The origins comprise all sites of the infinite
cluster.

In addition to the determination of p(S ) for difFer-
ent origins, in a given realization of the infinite cluster,
we also investigated difFerent realizations of the infinite
cluster at the percolation threshold. For the lattices of
size 250 x 250 we repeated the analysis described above
for another realization of the infinite cluster, again with
N„selections of a difFerent origins. In total, JV = 12
different realizations of the disorder were created and in-
vestigated. The number of random walks performed &om
one origin was typically NR~ ——10000, the step number
was always fixed at n = 1000, and N„= 10 000 —22000
realizations of difFerent origins for each of the A' = 12
realizations of the disorder were taken. As a result
v'e have then K„x JV difFerent distributions p, „(S )
(i = 1, . . . , N„r = 1, . . . , JV) and N„x JV values of (S ).
The further analysis of these quantities is described in
the following section.

To examine the dependence on the lattice size distri-
butions of the probability distributions of the (S ) val-
ues we also created one "infinite" cluster in a lattice of
750 x 750 sites. The infinite cluster had 180 605 sites and
we used all these sites as starting sites in the procedure
described above. In this way we obtained an additional
set of K„= 180605 distributions p;(S„) and values of

It is not evident that the use of difFerent origins of the
random walks in one realization of the disorder is equiv-
alent to the procedure of creating many different realiza-
tions of the disorder for the random walks. To address
this question we also created 10000 different realizations
of the infinite cluster in lattices of sizes 250 x 250 and
performed NR~ ——10000 random walks for one origin in
each realization.

In the remainder of this section we consider the distri-
bution of the mean values (S ) of distinct sites visited
by random walks of n steps that arise &om the different
selections of the origins in fixed realizations of the dis-
order, and from the 10000 different realizations of the
disorder, with only one origin of the walks. All (S ) val-
ues that were obtained by the procedure described above
are rounded to integers. We search for the smallest value
of (S) in this set and note how often it occurs. We con-
tinue by increasing (S ) by unity and noting its number
of occurrence. This procedure is repeated up to the max-
imal value of (S ). In this way we obtain a histogram of
the normalized distribution W of the (S ) values. Three
such distributions are shown in Fig. 1, namely, for the
infinite cluster in the lattice with 750 x 750 sites, for the
combined histogram of (S ) values for all (JV = 12) infi-
nite clusters of the lattices with 250 x 250 sites, and also
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from the creation of JV = 10000 different realizations of
the infinite cluster, with one origin in each of the realiza-
tions. For comparison, the distribution W((S„)) for one
infinite cluster in a 250 x 250 lattice and for all its sites
taken as origins, is also given. We observe that both
distributions show the same magnitude of fluctuations.
Hence we can state that the choice of different origins in
one realization of the infinite cluster leads qualitatively
to the same behavior of W((S )) as the implementation
of different realizations of the disorder. Since the fluc-
tuations are averaged out by choosing larger lattices, we
can say that the distribution W((S„)) appears to be a
self-averaging quantity.

FIG. 1. Distribution W of (S ), the mean number of dis-
tinct sites visited by random walks in the in6nite cluster of a
percolating lattice. The solid line represents the distribution
for a cluster of size 750 x 750, where N„= 180605, the dotted
line represents the distribution for a cluster of size 250 x 250
with N„= 14 550, while the dashed line represents the average
of 12 difFerent clusters of size 250 x 250.

for one infinite cluster in a lattice with 250 x 250 sites.
The fact that we have a broad distribution demonstrates
that quite different values of (S„) appear for different
selections of the origin.

All three distributions show fluctuations in their shape.
The distribution W((S )) shows less fluctuations when it
is determined in the largest lattice or as an average over
the 12 smaller lattices, than in the case of one smaller
lattice. The fluctuations of the shape of W((S )) for
the largest lattice are of the same order as for the aver-
age over the 12 smaller lattices. Both samples contain
approximately the same number of origins. This means
that the fluctuations are averaged out by choosing larger
lattices and correspondingly more different origins in the
infinite cluster.

In Fig. 2 we give the distribution W((S )) that results
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FIG. 2. Comparison of the distributions W of (S ), the
mean number of distinct sites visited by random walks for
A' = 10000 difFerent realizations of the percolating cluster in
lattices of size 250 x 250 (solid line), and for one realization of
the cluster of the same size (dashed line), where K = 14 550
diferent realizations of the origin have been considered.

IV. MULTIFRACTAL ANALYSIS

A. Distribution of mean value (S )

In principle, one can use the distribution W((S )) of
the previous section for further analysis, for instance,
with regard to the behavior of its moments. In this sub-
section we will proceed with the analysis of the distribu-
tion of the (S ) values in a different way, which is more
in vein with other analyses of multifractality [6,9]. We
note that the maximal possible number of visited sites is
S = n and the minimal number is S;„=1, although
these values are never realized in practice. We define the
normalized quantity 8 by

(S.) —S;.
S =

~max ~min

We now make a box subdivision of the possible values of
0 & 8 ( 1 into 2 boxes and put the 8 values obtained.
into the boxes. We define

(2)

where N, is the number of 8 values that fall into box
number i, and N„ is the number of different origins of
random walks that we use in our calculations.

Figures 3(a)—(d) show the resulting histograms of the
distributions of the 8 values, for different values of v. One
recognizes strong fluctuations, for the different choices
of the v values. Qualitatively, the fluctuations for v =
10 have the same magnitude as the fluctuations in the
distribution W((S )) that is shown in Fig. I. For the v
values that are used in Fig. 3 the individual probabilities
p,; take on quite difFerent values. If v is increased, the
subdivision becomes finer and finer, and eventually the
situation is reached where the unnormalized N, in Eq. (2)
are either zero or one. This is certainly the case for v
larger than. 24.

To get information on the structure of the distribution
of the p; we calculate the partition function &om the
moments

&.(I) = ).v,'

where l = 2 ", and investigate whether
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FIG. 3. Histogram of the
prorobabilities of occurrences of
s values for four box subdivi-
sions, as shown in the 6gures.
The data were obtained from
the lattice of size 750 x 750.
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FIG. 4. Plot of Z~(t) versus
l in a log-log representation, for
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The symbols are the calculated
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10 B. Distribution of probabilities of visiting certain
numbers of sites
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FIG. 5. Plot of the mass scaling exponents r(q) vs q that
follow from the curves of Fig. 4. The dots represent the
slopes of the curves of Fig. 4 for small v values, while the
continuous line is the straight line rh(q) = q —1. The inset
is a plot of the singularity density that results from the mass
scaling exponents.

for positive q. A slope of exactly 1 corresponds to uniform
measures and constant-gap scaling. It may well be that
r(q) becomes completely straight for infinitely large lat-
tices. The w(q) curve that is determined &om the larger
v's for negative q is concave, contrary to other cases of
multi&actality. We cannot offer arguments whether such
a behavior is reasonable, and what would be the limiting
value of ~(q).

Note that r(1) = 0, because of the normalization of the
y,;. For q = 0, the moments Z(0) = Ni, where Ni, is the
number of boxes with nonzero entries in the correspond-
ing subdivision. The resulting value ~(0) is the negative
of the fractal dimension of the set [6], i.e. , D(0) = —w(0).
We observe D(0) = 0.96. This value is close to unity,
indicating that there are only a few empty boxes in the
subdivisions between the bounds of the distribution.

Another quantity of interest in the multi&actal anal-
ysis is the singularity density f(n). It is obtained from
the scaling exponents by a Legendre transformation

We now investigate in detail how the probability that a
certain number of distinct sites is visited depends on the
choice of the origins of the walks, in given realizations
of the disorder, and on the different realizations of the
infinite cluster at the critical point. It was described
in Sec. III how the difFerent distributions p, „(S ) are
estimated by numerical simulations. We first consider
the case where different origins were chosen, for a given
realization of the infinite cluster. Since the origins of the
random walks may have quite different local vicinities,
we expect widely different distributions of the numbers
of distinct sites visited, for different origins.

Figure 6 shows four difFerent distributions (taken at
random) of the number of distinct sites visited, for ran-
dom walks starting at four different origins. The distri-
butions P(S ) are not yet normalized. The distributions
shown in Fig. 6 are very different &om each other; ev-
idently this is a consequence of the form of the infinite
cluster at the percolation threshold. If the distributions
P(S„) are determined in a lattice away from the perco-
lation threshold, they should not so strongly differ Rom
each other. We have convinced ourselves that this is in-
deed the case, and a figure for p = 0.75 is given in Ref.
[13], in which the four distributions of Fig. 6 practically
collapse.

Next we consider the set of different realizations of
p(S„) for K, difFerent origins in a fixed realization of
the infinite cluster. Let us consider a specific value of
S, for instance, S = 100. The multi&actal analysis is
concerned with the specific properties of the probabilities
themselves. Here the question is the distribution of these
probabilities p(S ), for fixed S„,for different selections of
the origins. A related problem is the structure of the dis-
tribution of the individual probabilities p(S„), taken at
the mean values S = (S) for the difFerent realizations

P(S) 300-

f(n) = nq —~(q),
d~(q)

To obtain the singularity density f(n) we have difFerenti-
ated the w(q) curves of Fig. 5 numerically using intervals
Lq = 0.1. The results for the singularity density are
shown in the inset of Fig. 5, and do not show the usual
behavior that is characteristic of multifractal measures.
The details of this curve can be understood &om the be-
havior of r(q), e.g. , the sections that are almost vertical
originate from the w(q) for positive q. In summary, we
must leave the question open whether the distribution of
the normalized values of 8 is multifractal or not.

0
0

I

20 40 60 80 100 120 140 160 180 200s

FIG. 6. Plot of four distributions P(S) of the number S of
sites visited by random walks starting at four different points
of the percolating cluster at the critical threshold. Each dis-
tribution is made from 10 000 realizations of walks of n = 1000
steps which start at a fixed origin. The lattice size here is 250
x 250.
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of the origins.
To visualize the distribution of p(S ) for fixed S„we

consider the set of the unnormalized distributions P(S )
and represent the number of occurrences of different val-
ues of P for fixed S in a histogram. For simplicity we
call the distribution of the difFerent values of P(S ) a
"hyperdistribution, " II(P(S )). Four representative hy-
perdistributions for four specific values of S are given in
Fig. 7. We find the overall average of S for n = 1000
to be about ({S)) 76, and the brackets designate the
random-walk average for fixed origin, while the braces
signify the disorder average. We notice that for S values
that are considerably smaller or larger than this average
value the hyperdistributions are skewed to small values
of P. For S close to the overall average the distributions
are centered around a value which may be considered as
typical.

In the multi&actal analysis of these distributions, the
moments of the set of the probabilities are determined,

(6)

p(s„)
+RW ) p(S„) = 1.

S

500

where the sum runs over the different realizations of the
disorder. The moments can also be derived &om the
hyperdistribution II(P(S„)) after suitable normalization,
but we prefer to work directly with the definition (6).
The exponent q may be taken positive, or negative with
the proviso that zero values of p(S„) are omitted for q (
0. The probabilities p(S ) are normalized with respect
to summation over S„,

Consequently, in our analysis the moment m~ is not nor-
malized to unity. Instead, it represents an estimate of the
disorder average of p(S ) and it will serve as a reference
quantity.

Since this quantity plays an important role in the sub-
sequent analysis, we will show its dependence on the
value of S that is selected for the corresponding hy-
perdistribution. Figure 8 presents the first moment, des-
ignated by (p), as a function of the considered values
of S . The curve shows very small Quctuations to the
left of the maximum, but it is completely smooth on the
right side. The maximum corresponds to the most prob-
able value of S . Similar curves can be produced for the
other moments. The positive moments show increasing
Huctuations with q to the left of the maximum. The
curves for the negative moments have two maxima, as it
is expected.

The mass scaling exponents w(q) can be defined as

(8)

From the definition of the moments (6) follows obviously
7'(1) = l. If the probabilities p(S ), are all difFerent from
zero in the different realizations of the origins, then mo ——

1 and consequently w(0) = 0. It should be noted that
in this characterization of the multi&actality of the set
of diferent realizations the system size is not a relevant
parameter, similar to the study of Ref. [3]. The scaling
parameter of this approach is the first moment mq, as
Eq. (8) shows.

The application of Eq. (8) requires that the moments
mq scale indeed in this way under variations of m&. This
property must first be examined for the probability dis-
tributions under study. Figure 9 gives a plot of mq ver-
sus mi = (p), in a double-logarithmic representation,
for various values of q. There appear two branches of
the curves mq versus m~, corresponding to two different
S values. It is evident that no straight lines are present
(except for q = 1, which is the trivial case), only some

II (P(s))
250

0
0

(P) 0.00S—

FIG. 7. Plot of the distributions II of the probabilities
P(S ) when all the origins of 12 difFerent realizations of the
percolation cluster are taken, resulting to a total of almost
180000 origins. Four values of S are considered, as marked.
The x axis in this figure corresponds to the y axis of Fig. 6.
The y axis in this figure now shows the distribution of the
P values for about 180000 different origins for the four spe-
cific S values. For each origin P(S„) was determined with
n = 1000 steps and 10000 realizations of the walks, as the
data in Fig. 6.

0
0

FIG. 8. Plot of the distribution of the first moment of p,
i.e., the average value (p) = mi, with regard to the number
of sites visited, for a walk of n = 1000 steps, for 12 different
realizations of the percolation cluster.
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