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The present paper deals with electronic excitation transfer in columnar liquid crystals formed by disklike
molecules. The transport process is considered to occur in the singlet state via random walk hopping and is
studied by Monte Carlo simulations. The distance dependence of the hopping probability is determined by
the extended dipole approximation. Long-range steps, both intracolumnar and intercolumnar, are taken into
account. The influence of (i) the number of nearest neighbors to which hops may occur, (ii) the intercolumnar
distance, (iii) the length and the orientation of the transition dipoles, on the root mean square displacement
along the column axis and the survival probability in presence of traps is investigated. It is shown that
long-range hops slow down the transfer process. The transport is initially one-dimensional and becomes
three-dimensional at longer times. The crossover regime is shifted to shorter times when the intercolumnar
distance decreases or the length of the transition dipoles increases. The motion of the excitation is accelerated
either by a better ordering of the transition dipoles around the column axis or by a continuous change of their
orientation during the walk.

1. Introduction

A large number of publications deal with energy transport in
restricted geometries. Among the various systems studied
experimentally in this respect, columnar liquid crystals have
attracted attention because of their highly anisotropic structure1

(Figure 1). Indeed, these molecular materials have been
considered as systems in which excitation transport should be
one-dimensional.2-8 Such an assumption seems to be quite
reasonable for triplet migration occurring via the short-range
exchange interactions.7 Conversely, for singlet states, the ideal
picture of a one-dimensional process turned out to be oversim-
plified.9

The most detailed investigation of singlet excitation transport
in columnar liquid crystals was carried out for hexakis(alkoxy)-
triphenylenes for which energy migration takes place via random
walk hopping.8,9 The fluorescence decays of these mesophases
containing energy traps were fitted by theoretical curves, the
fitting parameter being the hopping time between two neighbor-
ing molecules in the same column. At a first approximation, a
one-dimensional random walk model allowing hops only to first
nearest neighbors was tested.8 This model gave quite good fits,
but the resulting hopping time (30 fs) was too small for an
incoherent process.10 Following this intriguing result and in
order to take into account the different factors playing a role in
the excitation transport, Monte Carlo simulations were used to
fit experimental fluorescence decays.9 Long-distance hops, both
intracolumnar and intercolumnar, were considered. Moreover,
various patterns were used for the distance dependence of the
hopping probability, all corresponding to Coulombic interactions
and all giving good fits. The type of those patterns proved to
be quite crucial for the hopping time values which were found
to vary from several femtoseconds to picoseconds.

The most important conclusion of the above mentioned
analysis of experimental data was that molecules cannot be
considered as simple points in the description of the transfer
process.9 Indeed, in columnar phases, the stacking distance is
smaller than the “diameter” of the disklike chromophores.
Therefore, the orientation and the length of transition dipoles
have to be taken into account. The effect of those two factors
on the properties of the eigenstates of columnar aggregates
formed by triaryl pryrylium salts has been already depicted in
ref 11 in which the extended dipole approximation12 was used.
Within this context, we decided to use Monte Carlo simula-

tions to study in detail the singlet transport occurring in columnar
phases via a hopping mechanism. We determine the hopping
probability by the extended dipole approximation, and we
neglect exchange interactions. We mainly focus on two relevant
quantities, the root mean square displacement along the column
axis (Rz) and the survival probability of the excitation in presence
of traps (Φ).13,14 The former quantity allows us to illustrate
the temporal and spatial evolution of the excitation within those
molecular materials, while the latter is related to measuredX Abstract published inAdVance ACS Abstracts,June 1, 1996.

Figure 1. Columnar liquid crystals are usually composed of disklike
molecules containing a flat and rigid core, surrounded by flexible chains.
Their structure corresponds to stacks of segregated columns separated
by the chains in a liquid state. The intercolumnar distance is 15-40
Å, depending on the lateral chain length, while the stacking distance
is smaller than 4.5 Å. Columnar mesophases are stable at a certain
temperature range; upon cooling, crystallization takes place, resulting
in a change of the molecular arrangement. In some cases, the columnar
structure can be frozen (glassy state).
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fluorescence decays. The parameters whose influence onRz
andΦ is studied are (i) the number of nearest neighbors (n) to
which hops may occur, (ii) the intercolumnar distance, and (iii)
the length and the orientation of the transition dipoles around
the column axis. We also quantify the one-dimensional
character of the transfer process by calculating the probability
of the excitation to remain in the same column (P1d) as a
function of time.
Various types of columnar liquid crystals exist.1 In the

present investigation, we are interested in Dho mesophases,
illustrated on Figure 1, because energy transport has been studied
experimentally in such systems.8,9 In Dho mesophases, the
stacking distance is constant, the aromatic cores are centered
and perpendicular to the column axis, and the columns are
arranged in a hexagonal array.
The paper is organized as follows. In section 2, we determine

the distance dependence of the hopping probability in the
extended dipole approximation and we present the various
patterns related to the orientation of the transition dipoles. The
procedure followed in the Monte Carlo simulations is described
in section 3. In section 4, we report and discuss the results of
the calculations. In section 5, we summarize our approach and
we draw the final conclusions.

2. Hopping Probability

Energy transfer takes place through a hopping mechanism
when the couplingV between transition moments is weaker than
the Boltzmann factor. If the transfer is slow compared to
vibrational relaxation, the hopping ratekh is given by the Fermi
golden rule:

whereF is the density of final states. The hopping timeth is
the reciprocal of the hopping rate (th ) 1/kh) and the hopping
probability is proportional to the hopping rate. Equation 1 gives
the possibility of correlating the hopping probability to the
coupling and, consequently, to transition moments.
In the extended dipole model,12 a transition moment is

approximated by a dipole composed of two charges+ε and-ε
separated by a distancel and placed at the center of the
molecule. The dipole momentµ is equal toεl, and the coupling
V between two transition moments is given by the electrostatic
interaction between the corresponding four charges (Figure 2):

whereK is a constant. It should be stressed that the dipole
length used in the extended dipole approximation is not the
length of the transition dipole in a quantum mechanical sense.
It corresponds to an effective length providing a distance

dependence of the coupling equivalent to the quantum mechan-
ical one which contains not only dipole-dipole but also higher
terms (dipole-quadrupole, quadrupole-quadrupole, octupole-
octupole, etc.).9

The transition dipoles of two molecules belonging to a Dho

phase are parallel to thexyplane (Figure 3). If they are located
at positions (0,0,0) and (a,b,c) of a Cartesian coordinate system,
the distancesr++, r- -, r+-, andr-+, appearing in eq 2, can be
written as follows:

The angleθ is the differenceθ ) R2 - R1; the anglesR1 and
R2 are defined in Figure 3. Equations 1-6 allow us to determine
the probability of the excitation to hop from one molecule to
another as a function of their position and their orientation within
the columnar lattice.
Regarding the orientation of transition dipoles around the

column axes, we examine three different patterns, related to
the molecular orientation in columnar liquid crystals: “random
and frozen”, “randomizing”, and “helical”.
In the first one, the transition dipoles are randomly distributed

around the column axis and they do not move during the transfer
process. Experimentally, such a pattern typically corresponds
to a glassy state, in which molecular movements are hindered.15

In the second pattern, the transition dipoles are randomly
distributed and they reorientate after each hop of the excitation.

Figure 2. Schematic representation of the extended dipole model. The
transition moment is approximated by a dipole composed of two charges
+ε and-ε separated by a distancel and placed at the center of the
molecule. The couplingV between the two transition moments is given
by the electrostatic interaction between the four charges (eq 2).

kh ) 4π2FV2/h (1)

V) K( 1
r++

+ 1
r- -

- 1
r+-

- 1
r-+

) (2)

Figure 3. Schematic representation of the molecules considered in
the calculation of the hopping probability forn ) 3. Excitation is
initially located at the origin of a Cartesian coordinate system (disk in
grey) and can jump to any of the represented molecules in the same or
in one of the six neighboring columns. For simplicity, only one of the
six neighboring columns is shown. Arrows denote the transition
dipoles. The angleθ used in eqs 3-6 is defined asθ ) R2 - R1. The
position to which excitation hops has coordinates (a,b,c).

r++ ) [(a- l
2
(cosθ - 1))2 + (b- l

2
sinθ)2 + c2]1/2 (3)

r- - ) [(a+ l
2
(cosθ - 1))2 + (b+ l

2
sinθ)2 + c2]1/2 (4)

r+- ) [(a- l
2
(cosθ + 1))2 + (b+ l

2
sinθ)2 + c2]1/2 (5)

r-+ ) [(a+ l
2
(cosθ + 1))2 + (b- l

2
sinθ)2 + c2]1/2 (6)
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Randomizing structures have been used in the study of random
walks in polymeric systems.16,17 This pattern is appropriate for
liquid crystalline columnar phases, in which various types of
molecular motions occur during the hopping process.18,19

Finally, in the helical pattern, the angle between two
neighboring transition dipoles is constant and equal to 45°. Such
helical structures have been determined by X-ray diffraction
measurements for certain columnar phases formed by triph-
enylene derivatives.20,21

3. Simulation Procedure

A “particle” corresponding to the excitation, localized on a
single molecule, is considered to perform a random walk on a
three-dimensional lattice consisting of 106 sites (Figure 3). The
sites are aligned along thez direction at a distance of 3.6 Å.
The column axes form a hexagonal array in thexy plane. The
intercolumnar distance is varied between 15 and 35 Å. We
use cyclic boundary conditions in thex and y directions and
reflecting ones in thez direction.
The “particle” is given the possibility of jumping to 2n sites

in the same column (n above andn below the current position)
and to 2n - 1 sites of the six neighboring columns (Figure 3).
The number of nearest neighborsn is varied between 1 and 12.
The distance dependence of the hopping probability is deter-
mined as explained in section 2. The lengths of the extended
dipole tested are 1, 2, 3, 4, 5, and 6 Å. The point dipole (l )
0) is simulated in the calculations by settingl ) 10-3 Å.
For the calculation of the survival probability, we consider

that 1% of the lattice sites are energy traps acting with the
trapping efficiency equal to 1. Traps are randomly distributed
in the lattice. We monitor the time needed for a particle to be
trapped. The same procedure is repeated 105-106 times, for
different trap distributions. Then, we calculate the percentage
of the particles which have not been trapped at timet, as a
function of time. In the plots presented below, we do not take
into account the lifetime of the excitation in the absence of traps
(intrinsic lifetime). The estimated error on the data is of the
order of 1% for the root mean square displacement along the
column axis (Rz) and 0.5% for the survival probabilityΦ.
In order to make the connection with the real systems clear,

we use physical units for the distance (Å) and time (ns). For
this purpose, we have assumed that the hopping time between
two nearest neighbors in the stack corresponding to parallel
transition dipoles is 1 ps.9 We present the results of our
calculations on a time scale of 0.1-100 ns, corresponding to
usual experimental conditions for recording fluorescence decays.

4. Results and Discussion

4.1. Number of Neighbors. At first, we examine the role
played by the number of nearest neighborsn to which excitation
can hop. This question has been addressed previously but in
relation to different basic quantities of the random walk than
those presented here.22,23 Figure 4 shows the influence ofn on
the root mean square displacement and the survival probability.
We can see that whenn increases,Rz becomes smaller, while
Φ increases. In other terms, the higher then used in the
simulations, the more restricted appears the motion of the
excitation. This happens because the time spent for a long-
range hop, for example, to the 10th neighbor, is considerably
longer than the time needed by the particle to cover the distance
of 10 lattice sites with steps to the first neighbor only.
We observe that, at a given time, the curves in Figure 4

converge for a certain value ofn; for example, at 100 ns,
convergence occurs forn ) 10. Thus, including more than 10
neighbors in the calculations does not affect the profile ofRz

andΦ at the time scale in which we are interested. Indeed, the
probability of hopping to further neighbors (n> 10) is so small
that it is never realized within the examined time scale.
It is worth noticing that the curves obtained forn) 1 do not

follow the monotonicity ofn. This happens because there is a
relatively high probability of finding two successive molecules
in the same column whose transition dipoles form an angle close
to 90°, somewhere above the current position and somewhere
below it. The hopping probability is then too small, and these
sites act as infinitely high barriers. The particle is thus confined
in the region between these two barriers, and its motion is
limited. Whenn g 2, the particle is not hampered by the
presence of these high barriers, since it may easily jump over.
Finally, we observe in Figure 4 that the plots of bothRz and

Φ present crossovers around 10 ns. This behavior will be
discussed in the following paragraph (section 4.2), together with
the results shown in Figure 5.
4.2. Intercolumnar Distance. Figure 5 shows the influence

of intercolumnar distanceD on Rz and Φ. For comparison
reasons, the behavior of a one-dimensional system (D ) ∞)
characterized by a dipole length of 3 Å and “random and frozen”
orientation of transition dipoles is also illustrated. In the latter
case, a straight line is observed andRz varies ast0.4. Such a
variation is different from that expected (Rz ∝ t0.5) for a random
walk on a one-dimensional system with steps only to first nearest
neighbors without taking into account the size and the orientation
of transition dipoles.24 It is clear that those factors make the
transfer process slower.
At early times, the curves plotted in Figure 5a for different

D values coincide with the straight line corresponding to the
one-dimensional behavior. As time passes, they deviate from

Figure 4. Influence of the number of nearest neighbors (n ) 1, 2, 4,
6, 8, 10, 12) to which excitation may jump on (a) the root mean square
displacement along the column axis (Rz) and (b) the survival probability
Φ for a trap concentration of 10-2. The dashed line corresponds to
the first nearest neighbor approximation. Conditions: “random and
frozen” orientation of transition dipoles,l ) 3 Å, D ) 25 Å.
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it, because excitations start departing from the column where
they were initially formed. WhenD decreases, the deviation
from the one-dimensional behavior is observed at earlier times.
In fact, upon decreasingD, the probability of intercolumnar
jumps increases and the transfer process becomes three-
dimensional earlier. Crossover regimes are reported in the
literature for other types of systems.25,26 When intercolumnar
jumps become effective, the transfer rate along the column axis,
υz, defined as

diminishes.
We observe in Figure 5b that the decay becomes slower

when D decreases. As a matter of fact, the smaller the
intercolumnar distance, the more rapid the transition toward
the three-dimensional behavior; such a behavior involves
long-lasting intercolumnar hops which contribute to the elonga-
tion of the particle lifetime. Therefore, at a given time, the
closer the columns, the higher theΦ value. We also remark
that all of the decay curves are quite different from that
corresponding to the one-dimensional system (D ) ∞), even at
short times.
In order to obtain a better picture about the dimensionality

of the examined system, we have calculated the probability (P1d)
for the excitation to remain in the column in which it has been
created as a function of time (Figure 6). We observe that only
for D > 30 Å, the transport is quasi-one-dimensional (P1d >
0.9) during the first few nanoseconds. For distances 20 Å< D
< 25 Å, corresponding to the triphenylene columnar phases
studied previously,2,9 50% of the excitations have performed

intercolumnar jumps within the first few nanoseconds. This
confirms that the one-dimensional model is inappropriate for
fitting fluorescence decays of these systems.
4.3. Length and Orientation of Transition Dipoles. Figure

7 shows the influence of the extended dipole length onRz and
Φ. We remark that, in the one-dimensional region, the transfer
rate υz does not depend on the dipole length (Figure 7a).
Conversely,l has an influence on the time at which the crossover
toward the three-dimensional behavior takes place: the longer
the l, the earlier the intercolumnar jumps become effective. At
longer times, when the three-dimensional regime is developed,

Figure 5. Influence of the intercolumnar distance (D ) 15, 20, 25,
30, 35 Å) on (a) the root mean square displacement along the column
axis (Rz) and (b) the survival probabilityΦ for a trap concentration of
10-2. The solid line corresponds to a one-dimensional system (D )
∞). Conditions: “random and frozen” orientation of transition dipoles,
l ) 3 Å, n ) 10.

υz ) ∂Rz/∂t (7)

Figure 6. Influence of the intercolumnar distance (D ) 15, 20, 25,
30, 35 Å) on the probability for the excitation to remain in the same
column (P1d) as a function time. Conditions: “random and frozen”
orientation of transition dipoles,l ) 3 Å, n ) 10.

Figure 7. Influence of the length of the extended dipole (l ) 0, 1, 2,
3, 4, 5, 6 Å) on (a) the root mean square displacement along the column
axis (Rz) and (b) the survival probabilityΦ for a trap concentration of
10-2. Conditions: “random and frozen” orientation of transition
dipoles,D ) 25 Å, n) 10. The solid line (D ) ∞) in (a) corresponds
to a one-dimensional system characterized by random and frozen
orientation of transition dipoles andl ) 3 Å andn ) 10.
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υz becomes again independent ofl. The survival probability
curves (Figure 7b) coincide at early times; then they split up,
and they meet again at longer times. This indicates thatl does
not affectΦ, neither during the one-dimensional behavior nor
the three-dimensional one, but it does play an important role
during the crossover regime. At a given time during this regime,
Φ increases for increasingl. Thus, regarding the time at which
the crossover regime appears, increasingl has the same effect
onRz andΦ as that of decreasingD. This suggests that when
the dipole length increases, the average interaction between
transition moments of chromophores located in neighboring
columns becomes stronger and, consequently, the probability
of intercolumnar jumps becomes higher.
In Figure 8 we examine three different patterns describing

the orientation of the transition dipoles (cf. section 2). For all
of the plots presented previously, the frozen and random pattern
has been used. When the transition dipoles remain frozen during
the transport, but instead of being randomly distributed around
the column axis, they form a helix in which the angle between
two neighboring dipoles is 45°,Rz increases whileΦ decreases.
This means that an increase in the order inside the column will
increase the distance to which energy can migrate and will
decrease the survival probability because the barriers, generated
by unfavorable orientation of transition dipoles, disappear. The
same trend is observed if the transition dipoles remain randomly
distributed but they reorientate after each hop. The difference
in the behavior between a random and frozen and a randomizing
pattern is explained as follows. In the former, when the particle

finds itself in an environment unfavorable for its motion, it
spends a long time in it, while in the latter, the local environment
changes continuously and it is easier for the particle to escape.
Finally, we can make a general remark concerning the

absolute values related to the root mean square displacement
along the column axis and the survival probability in the
presence of traps (Figures 5, 7, and 8).
We can see thatRz does not exceed 200 Å (56 molecules) in

the examined time scale. Such smallRz values show that, for
nonaligned samples, the motion of the excitation will be
practically restricted within a single monodomain whose size
is of the order of the micrometers. This is in agreement with
fluorescence anisotropy measurements9 and also explains why
macroscopic alignement of the columnar phases containing traps
does not affect the fluorescence decays.25

The survival probability at 100 ns is still high (>0.5).
Consequently, we deduce that fluorescence of columnar phases
containing 10-2 traps decays mainly because of the intrinsic
lifetime of the fluorescent statesusually a few nanosecondssand
not because of the trapping process.

5. Summary and Conclusions

In the present work we have investigated singlet excitation
transport in columnar phases using Monte Carlo simulations.
This computational technique has enabled us to take into account
the complex structure of the examined systems, to limit the
number of approximations and, therefore, to construct a model
close to reality. We have assumed that the transfer process takes
place via random walk hopping, and we have taken into account
long-distance hops, both intracolumnar and intercolumnar.
Considering that the stacking distance is smaller than the
“diameter” of the disklike molecules, we have determined the
distance dependence of the hopping probability in the extended
dipole approximation.
Our study has been focused mainly on two properties of the

random walk, the root mean square displacement along the
column axis and the survival probability in the presence of traps.
We have presented our results using physical units for the
distance (Å) and time (ns) so that the connection with
experimental systems is as clear as possible.
We have shown that long-range interactions are quite

important and can change significantly the results of simulations.
In general, the transfer process appears to be more rapid if we
neglect long-distance hops. Therefore, results based on first
nearest neighbor approaches should be considered with care.
We have drawn the conclusion that the system can be treated

as one-dimensional only for short times, of the order of a
nanosecond or less. Energy transport seems to take place
initially inside one column. Afterward, we observe a transition
regime where excitations start jumping to neighboring columns,
and finally excitations move in the three-dimensional space. This
behavior is influenced by both the intercolumnar distanceD
and the lengthl of the transition dipole: the three-dimensional
character of the walk is delayed in time by increasingD or by
decreasingl. Finally, we have evidenced that either a better
ordering of the transition dipoles or a continuous change in their
orientation makes the transport process more rapid.
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Figure 8. Influence of the orientation of the transition dipoles on (a)
the root mean square displacement along the column axis (Rz) and (b)
the survival probabilityΦ for a trap concentration of 10-2. Condi-
tions: l ) 3 Å, D ) 25 Å,n) 10; “random and frozen”, the transition
dipoles are randomly distributed around the column axis and they do
not move during the transfer process; “randomizing”, the transition
dipoles are randomly distributed and they reorientate after each hop of
the excitation; “helical”, the angle between two neighboring molecules
in the same column is+45°.
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