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In modern optoelectronics, light sensors are playing a main role. The present work examines the con-
ditions of their performance, concerning photoconductivity. The model of a n-type photosensitive semicon-
ductor containing two localized levels in its energy gap is considered. The semiconductor is illuminated
homogeneously with bandgap-light and a constant electric field is applied. Electrons are excited by the
illumination from the valence- to the conduction-band and by the electric field from the localized levels to
the conduction-band. Electrons are also recombining from the conduction- to the valence-band and from
the conduction-band to the localized levels. Depending on the parameters of the system (i.e. generation-
and recombination rates, electric field strength, capture- and reemission-coefficients of the levels, ambient
temperature, etc) the semiconductor is exhibiting periodic or chaotic conductivity. Different routes to chaos
were observed in this system, like period doubling, intermittency and crisis induced intermittency.
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1. Introduction

Currently much interest has been focused in non-
linear semiconductors with chaotic behavior [1]. In
recent experiments on different kinds of crystals like
Ge [2], [3], GaAs [4], etc. nonlinear phenomena such
as period doubling , frequency locking, and chaotic
oscillations have been discovered. Concerning non-
linear photoconductivity L.L.Golik et al. [5] have
shown that a photoconductive n-type crystal with
two localized levels in its energy gap shows chaotic
behavior of the conductivity. In spite of the fact
that the understanding of the physics of instabil-
ities in semiconductors has been arrived at a sat-
isfactory level, an explanation of the effects men-
tioned above becomes possible only now due to the
advances of the chaos theory. Low-frequency pho-
tocurrent oscillations in CdS crystals occurring at
constant applied voltage and illumination were de-
scribed in [6]. This instability was also studied in
other semiconductors [7], [8]. The explanation for
this oscillatory behavior is based on the fact that
a stable non-equilibrium state of the semiconductor

becomes unstable because of temperature- or carrier
concentration- fluctuations due to Joule heating [9].
L.L.Golik et al. in [10] reported also the observa-
tion of chaotic and complex periodic oscillations of
photocurrent and temperature in photoconductive
semiconductors. In the present paper we report a
further investigation of the system proposed in [5]
showing that under certain conditions also the pe-
riod doubling and the crisis induced intermittency
routes to chaos are possible.

2. The model

We consider a photosensitive n-type semiconduc-
tor with two levels located at E1 and E2 below its
conduction band minimum Ec, with corresponding
concentrations X1 and X2, Fig.1. It is supposed
that the crystal is homogeneously illuminated with
monochromatic light of constant intensity, corre-
sponding to its energy gap Eg (i.e. h nu = Eg).
After the stationary state is reached the generation
rate G and the recombination rate R are constant
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and mutually equal.
In case the electric field E is applied on the crys-

tal the electrons trapped in E1 and E2 are excited
to the conduction band increasing the photocurrent
rapidly and the sample temperature T rises due to
inner Joule heating. This leads to depletion of the
levels, recombination of free carriers and returning
of the system to the initial state. This procedure
can be repeated again and again leading to oscilla-
tions of the free carrier concentration n and of the
temperature T . According to [5], [6] and [10] the
system of differential equations (balance equations)
governing the temporal changes of n and T and de-
scribing the photoconductor kinetics is the following
one:

dn

dt
= G−

n

τr
−

2
∑

i=1

dXni

dt
, (1)

dXni

dt
= γin(Xi −Xni)− γiNcXni; i = 1, 2; (2)

dT

dt
= Cn−

1

τ0
(T − T0), (3)

where the following symbols have been used: G is
the generation rate; R is the recombination rate; n
is the free electron concentration; p is the free hole
concentration E1, E2 are two energy levels at E1, E2

below the conduction band EC ; X1, X2 are the con-
centrations of the levels E1, E2, respectively; Xn1,
Xn2 are the concentrations of electrons captured in
the levels E1, E2; γ1, γ2 are the effective capture
cross-sections of E1, E2, respectively; γ1NC and
γ2NC are the effective emission cross-sections of E1,
E2, respectively; τ is the free electron lifetime; hν
is the incident photon energy; Eg = EC −EV is the

energy gap; T is the sample temperature; C = eµE2

ρCV
;

e is the electron charge, µ is the electron mobility,
ρ is the density, CV is the specific heat, E is the ap-
plied electric field; T0 is the ambient temperature;
τ0 is the characteristic cooling time of the sample.

3. The normalized system

To solve the previous system (1-3) numerically we
transform it to following normalized and dimension-

FIG. 1. The energy model of the considered n-type semi-

conductor including the two localized levels E1, E2 in its

energy gap.

less one:

ε1
dn

dτ
= 1− n+

2
∑

i=1

ε2i

{

Xni

1 + βi

exp

[

αiεT

(

1−
1

T

)]

− n

(

1−
βi

1 + βi
Xni

)}

; (4)

ε3i
dXni

dτ
= n

(

1 + βi − βiXni

)

−Xni exp

[

αiεT

(

1−
1

T

)]

; i = 1, 2; (5)

ε4
dT

dτ
= n (1− εT )− T + εT . (6)

If nS , XniS , TS are the steady state solutions of the
system (1a-1c) then the following substitutions have
been used for the transformation of the system (1 -
3) to the system (4 - 6):

τ =
t

τB1(TS)
(7)

n =
n

nS
, (8)

Xni =
Xni

XniS

, (9)

T =
T

TS
. (10)
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FIG. 2. Timeseries obtained for 5510K < E1/k < 5525K. a) Chaotic timeserie obtained for E1/k = 5517K b)

Intermittent timeserie obtained for E1/k = 5521K. Note that the periodic laminar lengths alternate with chaotic

bursts. c) Intermittent timeserie obtained for E1/k = 5522.5K. Note that as E1/k increases the laminar lengths

become longer and more frequent. d) Periodic timeserie obtained for E1/k = 5525K.

Here

τB1 =
1

γiNC

,

nS = Gτr,

XniS = nSXi [nS +NC(TS)]

for the temperature dependence of the free electron
lifetime we have assumed in agreement with [5] and
[11] that it is of the form

τr(T ) = τr0

[

exp

(

T − 380K

25K

)

= 1

]

(11)

the factors ε1, ε2i, ε3i, ε4 and εT characterizing the
capture and reemission of electrons are given by the

following relations:

ε1 =
τr

τB1(TS)
;

ε2i =
τr
τti

;

ε3i =
τBi(TS)

τB1(TS)
;

ε4 =
τ0

τB1(TS)
;

εT =
T0

TS
(12)

and the factors αi, βi and τti used in the nor-
malization are given by the following relations:

Nonlinear Phenomena in Complex Systems Vol. 2, No. 4, 1999



44 K. G. Kyritsi et al.: Chaotic Photoconductivity . . .

αi =
Eti

kT0
;

βi = ε2i

[

GτBi(TS)

Xni

]

;

τti =
1

γiXni
;

τBi(T ) =
1

γiNC

.

FIG.3 Timeseries obtained for 5550K < E1/k <

5588K. a) Periodic timeserie obtained for E1/k =

5550K. Note the similarity of this timeserie with those

of Fig. 2d. b) Periodic timeserie obtained for E1/k =

5580K. Note that two frequencies are now present in the

signal. c) Periodic timeserie obtained for E1/k = 5586K.

Note that four frequencies are now present in the signal.

d) Periodic timeserie obtained for E1/k = 5587K. Note

that eight frequencies are now present in the signal. e)

Almost chaotic timeserie obtained for E1/k = 5587.5K.

4. Numerical solution and results

To solve the system (4 - 6) numerically the fol-
lowing values of the parameters have been used:
X1 = 8.0 1015cm−3; 5325K < E1

k
< 5949K;

γ1 = 1.79 10−13cm3/s; C = 0.2J/gK; X2 =
3.5 1014cm−3; E2

k
= 6000K; γ2 = 7.14 10−12cm3/s;

ρ = 5.0g/cm3; T0 = 283K; G = 2.0 1013cm−3s−1;
µ = 102cm2/V s; NC = 2 1018cm−3; τr0 =
4.5 10−4s; E = 12000V/cm; τ0 = 3sec.
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FIG.4. Timeseries obtained for 5948K < E1/k < 5949K. a) Timeserie obtained for E1/k = 5948K. In the insert the

large attractor dominating in the corresponding phase portrait is shown. b) Timeserie obtained for E1/k = 5949K.

In the insert the smaller attractor dominating in the corresponding phase portrait is shown. c) Timeserie obtained for

E1/k = 5948.85K. Note that the timeserie is almost similar to that of Fig.4a, except that a small part of the timeserie

of Fig.4b is included in the present one. In the insert the attractor consist of two subattractors corresponding to the

two previous ones of Figs. 4a, 4b. d) Timeserie obtained for E1/k = 5948.9278K. Note that the timeserie is almost

similar to that of Fig.4a, except that a larger part of the timeserie of Fig.4b is included in the present one. In the

insert the attractor consist of two subattractors corresponding to the two previous ones of Figs. 4a, 4b.
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These values correspond to data from [5], [12]
and [13]. The numerical solution of the system
(4 - 6) succeeded using a modified version of the
well-known Runge-Kutta integration algorithm [14].
Both periodic and chaotic solutions were obtained
(in the form of time series). Depending on the value
of the position of E1 , which served as the control
parameter of the dynamical system the following
routes to chaos were observed:
1. Intermittency of the I type, as E1/k is shifted

from 5322 K to 5325 K.
2. Period Doubling, as E1/k moves from 5560 K

to 5588 K.
3. Crisis induced Intermittency, as E1/k changes

from 5948 K to 5949 K.

1 The Intermittency route to chaos

For E1/k values up to 5517 K the system has
chaotic solutions, Fig. 2a. As E1/k increases, this
chaotic behaviour is interrupted by periodic laminar
lengths, which become longer and more frequent,
Figs 2b, 2c. Finally, for values higher than 5523
K the timeserie becomes almost periodic, Fig. 2d.
This behaviour is typical for the intermittency route
to chaos [15].

2 The Period Doubling route to chaos

The second route to chaos observed for E1/k shift-
ing from 5550 K to 5588 K is this of period dou-
bling. For E1/k = 5550K the timeserie is a periodic
one, Fig.3a, similar to that of Fig. 2d. As E1/k in-
creases the first period doubling is observed at 5580
K, Fig. 3b, the second one at 5586 K, Fig. 3c, the
third one at 5587 K, Fig.3d and finally the orbit
becomes chaotic at 5587.5 K, Fig.3e.

3 The Crisis Induced Intermittency

The third route to chaos was observed for E1/k
shifting from 5948 K to 5949 K. For E1/k val-
ues up to 5948 K the timeserie has the form shown
in Fig.4a. As E1/k increases slightly to 5949 K the
timeserie changes suddenly becoming entirely dif-
ferent both in shape and amplitude, Fig.4b. For
E1/k values between 5948 K and 5949 K the corre-

sponding timeseries consist intermittently of parts
of the two timeseries obtained for 5948 K and 5949
K, Figs. 4c-4e. From the corresponding phase por-
traits, ( displayed as inserts in Figs. 4a-4e) it is ob-
vious that at E1/k = 5948K only a large periodic
attractor exists, which as E1/k shifts from 5948 K
to 5949 K, coexists with a second smaller one. Fi-
nally at E1/k = 5949 K the first large attractor
disappears and only the smaller one remains. This
means that the basins of attractions of the two at-
tractors (of the larger one for values of E1/k lower
than 5948 K and of the smaller one for values of
E1/k higher than 5949 K) as E1/k is shifting from
5948 K to 5949 K are colliding, creating thus a be-
haviour described in [16] - [18] as an interior crisis.
The corresponding intermediate forms of the time-
serie are described as crisis induced intermittency
[16].

5. Discussion

In ref.[5] the applied electric field served as the con-
trol parameter of the system (1 - 3) and only a pe-
riod doubling route to chaos was observed. On the
contrary in the present report the position of the
shallower localized level E1, was chosen as the con-
trol parameter, a fact that leads to the observation
of three different routes to chaos as E1 shifts in the
energy gap, between EC and E2.
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