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Absence of Kinetic Effects in Reaction-Diffusion Processes in Scale-Free Networks

Lazaros K. Gallos and Panos Argyrakis
Department of Physics, University of Thessaloniki, 54124 Thessaloniki, Greece

(Received 11 October 2003; published 2 April 2004)
138301-1
We show that the chemical reactions of the model systems of A� A ! 0 and A� B ! 0 when
performed on scale-free networks exhibit drastically different behavior as compared to the same
reactions in normal spaces. The exponents characterizing the density evolution as a function of time are
considerably higher than 1, implying that both reactions occur at a much faster rate. This is due to the
fact that the discerning effects of the generation of a depletion zone (A� A) and the segregation of
the reactants (A� B) do not occur at all as in normal spaces. Instead we observe the formation of
clusters of A (A� A reaction) and of mixed A and B (A� B reaction) around the hubs of the network.
Only at the limit of very sparse networks is the usual behavior recovered.
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A� B ! 0 types taking place on scale-free networks.
Networks of this type have been recently found to char-

isolate the largest cluster formed in the network. This is
identified via a burning algorithm; i.e., we start from a
The model bimolecular chemical reactions of the A�
A and A� B types have been heavily studied since the
pioneer work of Ovchinnikov and Zeldovich [1], postu-
lating a behavior drastically different than the mean-field
predictions, especially in low dimensions and in fractal
structures. These were verified additionally by numerical
simulations, which showed pictorially the dominating
effect in these two systems, i.e., the generation of the
depletion zone for the A� A type shown by Torney and
McConnell [2], and the spatial segregation of the two
types of reactants in the A� B type shown by Toussaint
and Wilczek [3]. In the past 20 years a large number of
works extended these initial ideas and explained in detail
how these effects come about, showed the existence of
several temporal regimes, explained the crossovers be-
tween the early-time and long-time behavior, and a
wealth of other information, rendering these systems as
some of the most heavily studied systems of interacting
particles [4].

Classically, the mean-field prediction for the density �
of the surviving particles in A� A and equimolar A� B
type reactions is

1

�
�

1

�0
� ktf; (1)

where f � 1, k is the rate constant, and �0 is the particle
density at t � 0. In nonclassical kinetics, though, an
‘‘anomalous’’ behavior has been observed. In a space
with dimensionality d the exponent f � d=dc for d �
dc, and f � 1 for d > dc. The upper critical dimension dc
equals 2 for A� A, and dc � 4 for A� B. Similarly,
anomalous behavior has been observed when the diffu-
sion-reaction process takes place on different geometries,
such as on fractals [5] where f � ds=dc, or on dendrimer
structures [6]. In all these cases the limiting value of the
exponent is f � 1, valid even in infinite dimensions.

In this Letter we study reactions of the A� A ! 0 and
0031-9007=04=92(13)=138301(4)$22.50 
acterize a wide range of systems in nature and society
[7,8], including the Internet, the World Wide Web, chemi-
cals linked via chemical reactions, sexual contacts, eco-
logical systems, etc. The term scale-free refers to the
absence of a characteristic scale in the connectivity of
the nodes comprising the network. Thus, each node of the
system has k links to other nodes in the system with a
probability

P�k� � k��; (2)

where � is a parameter characteristic of the structure of
the network. Although these systems are very large their
diameter is usually small, a property which is usually
referred to as the ‘‘small-world effect.’’ The topology
of such a network is quite complex and leads to a drasti-
cally different behavior for the above mentioned chemical
reactions.

Because of the different structure, as compared to
lattices, it is of interest to examine a reaction-diffusion
process on a scale-free network and observe the evolution
of the two major effects, i.e., generation of the depletion
zone and segregation of the reactants. Actual situations
could involve a virus-antivirus reaction of the Internet or
epidemics in a social network. Thus, we performed Monte
Carlo calculations of these model systems on a scale-free
network and monitored the usual parameters, i.e., density
as a function of time, and the exponent f [Eq. (1)].

A scale-free network is constructed as follows. For a
given � value we fix the number of nodes N � 106, and we
assign the degree k (number of links) for each node by
drawing a random number from a power-law distribution
P�k� � k��. We do not impose any cutoff value for the
maximum nodes connectivity, so that k can assume any
value in the range 	1; N
. We then randomly select and
connect pairs of links between nodes that have not yet
reached their preassigned connectivity and have not al-
ready been directly linked to each other. Finally, we
2004 The American Physical Society 138301-1
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FIG. 1. Plots of the reaction progress 1=�� 1=�0, as a func-
tion of time for (a) the A� A ! 0 reaction and (b) the
A� B ! 0 reaction on scale-free networks of (left to right)
� � 2:0, 2.5, 3.0, and 3.5. The initial density was �0 � 0:5 and
�0 � 0:25, respectively. All results correspond to networks of
N � 106 nodes, except for the dotted lines in (b), where we
present results for systems of N � 104 and 105 nodes. The
symbols represent the simulation data, while continuous lines
are the asymptotic best-fit lines.
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randomly chosen node, assign an index i to it, and ‘‘burn’’
all of its neighbors, by assigning the same index i to them.
The process repeats iteratively and when there are no
more neighbors to be burnt in this cluster, a new nonburnt
node is chosen again, an index i� 1 is assigned to it, etc.,
until all nodes have been visited with this process. The
largest cluster can now be easily identified by counting
the number of nodes with the same index.

The reaction mechanism is similar to the one routinely
used in the literature for the case of regular lattices. For
the A� A ! 0 reaction, an initial fraction of the nodes �0

of the largest cluster is randomly chosen. These nodes are
occupied by A particles. One particle is chosen at random
and the direction of its move is also chosen at random
with equal probability to one of its neighbor sites (nodes
directly linked to its present position). The total time
advances by 1=N. If this node is already occupied by
another particle the two A particles are annihilated;
otherwise the particle is moved to the new node. For
the A� B ! 0 reaction, an equal initial fraction �0 of
A and B particles are randomly placed on the network.
Particles move using the same algorithm described
above, but now when a particle tries to move to a node
where a particle of the same type resides the move is not
allowed, although the time advances. When an A particle
encounters a B particle these two particles annihilate. We
monitor the population of particles as a function of time.

In Fig. 1 we present the evolution of the particle con-
centration as a function of time for the (a) A� A and (b)
A� B reactions. Results for networks with different �
values are presented, where � ranges from 2 to 3.5,
representing a varying degree of node connectivities
(from dense to sparse networks). As we can see, the
curves follow power-law behavior with two distinct re-
gimes. In all cases, there exists a crossover between the
early-time regime and the asymptotic limit. The location
of the crossover point increases with �. For � � 2 the
crossover takes place as early as 10 steps or less, while for
� � 3:5 it is of the order of 1000 steps. The reaction rate,
also, is much faster for lower � values, with the concen-
tration falling to 10�4 in only 50 steps for � � 2, for both
types of reaction. In Fig. 1(b) and for � � 3 we also give
results for smaller networks (N � 104 and N � 105), in
order to ascertain that there are no finite-size effects for
the calculation of the asymptotic slopes.

These observations are in contrast with reaction
schemes on regular lattices. This can be clearly seen in
the calculation of the asymptotic slopes for the curves of
Fig. 1. These slopes [corresponding to the exponent f of
Eq. (1)] are presented in Fig. 2, as a function of �. There is
a small difference between the slopes of the A� A and
A� B types (with the latter slightly larger), but in all
cases the slope is greater than 1. The exponent f can
acquire very large values (f � 2:75 for � � 2) and is a
monotonically decreasing function of �. As already
stated, on all other geometries studied in the literature,
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the exponent f is lower than 1, while on scale-free net-
works we see that the value f � 1 is reached only asymp-
totically for networks with large �.

In order to understand the spatial distribution of the
particles, we calculate the number of close contacts they
form (we consider a close contact as the existence of a
link between two network nodes). In the case of the A�
A reaction, for fixed time, we measure the fraction QAA
defined as the number of contacts NAA between A particles
over the total possible number of contacts, i.e.,

QAA �
NAA

N�N � 1�
: (3)

The value of QAA � 1 corresponds to the extreme case
of all particles forming one cluster, while a decrease of
this value indicates the existence of a depletion zone
(particles are placed apart from each other). In Fig. 3(a)
138301-2
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FIG. 3. (a) A� A reaction: percentage QAA of contacts be-
tween A particles over the total number of possible contacts
NAA=N�N � 1� as a function of time. (b) A� B reaction:
percentage of AB contacts over (AA� BB) contacts as a func-
tion of time. The line at QAB � 1 corresponds to complete
mixing. The � values are as marked.
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FIG. 2. Asymptotic reaction rates (slopes of the lines in
Fig. 1), as a function of �, for the A� A ! 0 reaction (open
symbols) and the A� B ! 0 reaction (filled symbols).
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we calculate the fraction QAA for different networks as a
function of time. When � � 2 or 2.5 a depletion zone
initially forms, but immediately the number of contacts
increases with time. Most of the particles are clustered in
a small region and as time advances this clustering in-
creases, i.e., particles continue to gather in positions close
to each other, in the vicinity of the most connected nodes
(hubs). This is in striking contrast to the well-established
formation of a depletion zone on regular lattices. For
� � 3 we can see that the number of contacts remains
almost constant with time, while for � � 3:5 we can re-
cover the formation of the usual depletion zone, where the
number of contacts decreases monotonically with time.

Similar conclusions are found for the A� B reaction
[Fig. 3(b)]. In this case we measure the number of contacts
between unlike particles compared to the number of
contacts between particles of the same type. We use the
ratio QAB defined as [9]

QAB �
NAB

NAA � NBB
: (4)

The value of QAB tends to 0 when segregation of like
species is formed, while it tends to a value of 1 when
complete mixing of A and B occurs. When � � 2 there is
clearly no segregation of like particles, even at early
times, but both A and B particles mix together. For � �
2:5 and � � 3:0 there are hints of segregation, since the
number of unlike particle contacts decreases compared to
like particle contacts, but soon particles start to aggre-
gate. The time needed for the transition to mixing and the
extent of the depletion zone both increase with increasing
�. At � � 3:5 the classical picture with a clear segrega-
tion of particles reappears, where like particles gather
in clusters with a scarce presence of unlike particles at
all times.

This peculiar behavior can be attributed to the struc-
tural characteristics of the scale-free networks. Such
138301-3
networks are known to heavily rely on the existence of
hubs, which are nodes with a large number of connec-
tions. Moreover, such networks have been shown to have
an extremely small diameter, of the order ln�lnN� [10].
These two factors can explain the results of the present
work. The small diameter of the network causes the
majority of the particles to be at a close distance to
each other, and most of the nodes can reach a hub through
a small number of links. Thus, we expect that diffusion
will very soon bring the particles close to each other, and
they will react within a short period of time. This is
indeed the case of Fig. 1, where we can see that the
process ends rapidly. The importance of the hubs dimin-
ishes as we increase �, since now nodes are less connected
to each other, and the familiar notions of depletion zones
and segregation are restored for � � 3:5. One can picture
this process as a biased walk of the particles towards
the hubs, where the probability of encounter of another
138301-3



FIG. 4. Lattice analog pictorial of the particles configuration
in space for the A� B ! 0 reaction. Notice that particles of
different kinds gather in the same region, in the close vicinity
of the hubs.
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particle is much higher than in the case of a regular
lattice walk.

These concepts correspond to the idea of continuous
mixing. For the A� A reaction and low � values there
exists no depletion zone. This is due to the fact that
neighboring A particles annihilate initially in a very
fast rate, but as time advances the diffusion of the A
particles brings them close to the hubs, which dominate
the structure. Thus, there are always pairs of A close to
each other (absence of depletion). For larger � values, i.e.,
when the networks are more sparse, the connectivity of
the hubs diminishes, and the regular result of a depletion
zone is reproduced.

In Fig. 4 we present a lattice analog pictorial of the
A� B case. Although unlike particles that were close at
t � 0 have been annihilated, at longer times there is still
no segregation, since all particles, independently of their
type, move towards the hubs. We thus have the formation
of clusters made of A and B particles, which are located
close to the hubs. This means that A and B particles are
always mixed because of the underlying structure and the
reaction advances at a constant rapid rate. We have indeed
verified in our simulations that the majority of the anni-
138301-4
hilation reactions take place on the hubs. Notice also that
diffusion on scale-free networks is non-Markovian, since
the walk depends on the exact particle location, due to the
largely varying connectivity of the nodes.

A similar situation is encountered in another system,
that of Lévy walks, where it was observed that the
rare long-distance jumps break the formation of the seg-
regated regions, acting in effect like a stirring mecha-
nism [11,12].

Summarizing, we have presented evidence that reac-
tion-diffusion processes in scale-free networks are differ-
ent in their nature compared to lattice models, exhibiting
rapid reaction rates (f > 1). This is due to the small
diameter of the networks and the existence of the hubs.
These differences are more pronounced in compact net-
works of low � values, while for sparse networks, e.g.,
� � 3:5, the behavior is the same as for regular lattices.
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