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In this work, we extend the model of Bonabeau et al. in the case of scale-free networks.
A sharp transition is observed from an egalitarian to an hierarchical society, with a
very low population density threshold. The exact threshold value also depends on the
network size. We find that in an hierarchical society the number of individuals with
strong winning attitude is much lower than the number of the community members that
have a low winning probability.
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1. Introduction

Self-organization of society structures and the formation of hierarchies has always

been an important issue in sociological studies.1,2 Recently, a fresh point of view in

the same problem was introduced through application of statistical physics concepts

and methods. A simple, yet powerful enough, model was introduced by Bonabeau

et al.
3 in order to explain the uneven distribution of fame, wealth, etc. The model

was further modified later by Stauffer,4,5 who introduced a feedback mechanism for

determining the probability of one’s social rise or fall in the hierarchy.

The above model places the interacting individuals on a lattice, so that the space,

as experienced by a participant, is homogenous. Recently, though, a huge number

of observations on social (among many others) systems has revealed a strongly

inhomogeneous character in the number of connections between individuals.6,7 In

the present study, we extend the model of Bonabeau et al. for the case where the

substrate of the agents motion and interaction is such a scale-free network.

2. The Model

In the original version of the model proposed by Bonabeau et al.,3 a number of

agents are distributed randomly on a L × L lattice, occupying a concentration p
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of the total number of lattice sites. Each site can host only one individual. These

individuals perform isotropic random walks on the lattice. A random agent is cho-

sen and moves equiprobably to one of its four neighboring sites, while the system

time advances by 1/pN (when all individuals have moved on average once, time is

considered to have advanced by one Monte Carlo step). Each person i is character-

ized by a history parameter hi which is a measure of an individual’s “fitness” and

can represent wealth, power, or any property that is judged to be important in a

society. Initially, all participating agents are of equal status (hi = 1) and there is

no hierarchy in the population. When in the process of the random walk, though,

an individual i tries to visit a site already occupied by another person j, there is a

fight between the two. If the “attacking” person wins then i and j exchange their

positions. Otherwise, they remain in their original sites. The outcome of the fight

depends on the “strength” h of the two opponents, with a probability q that i wins

over j:

q =
1

1 + exp[η(hj − hi)]
, (1)

where η is a free parameter, with a constant value within each realization. After

a fight the fitness h of a person participating in a fight is updated: the fitness of

the winner h increases by 1, while the fitness of the loser decreases by 1. Thus, the

variable hi measures the number of wins minus the number of losses, but it is also

modified by an effect of fading memory. After one Monte Carlo step the fitness of

all individuals decreases to 90% of its current value. In other words, in order to keep

a large enough strength, it is not enough to have won a lot of fights in the past and

remain inactive, but one must always retain one’s strength by participating (and

winning) in fights. When the density of participants is low, this memory loss is the

prevailing mechanism that drives the system towards the egalitarian status, since

fights in that case are rare.

The level of separation in a society is measured via an order parameter, which

is taken to be the dispersion in the probability of winning a fight

σ = (〈q2〉 − 〈q〉2)1/2 . (2)

The average is considered over all fights occuring within one Monte Carlo time step.

A large value of σ reveals an hierarchical society where the probability of winning

differs considerably among the population. On the contrary, values of σ close to zero

imply that on average all society members “fight” each other in terms of equivalent

strengths.

In the original paper, a phase transition was observed upon increasing the den-

sity p, from σ = 0 to a finite σ value. Sousa and Stauffer,4 though, pointed out

that the transition was an artifact of the simulations and this transition was in fact

absent. Later, Stauffer proposed a different mechanism for calculating the winning

probability,5 where feedback from the current system state was introduced in the
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following form:

q =
1

1 + exp[σ(hj − hi)]
. (3)

In this case, an hierarchically organized population (large σ value) enhances the

probability of the strongest member to win, and thus introduces a preference to-

wards already strong individuals. This mechanism restored the sharp transition of

σ with increasing p, yielding a critical value close to pc = 0.32.

In this work, we apply the modified model of Eq. (3) on scale-free networks. A

scale-free network is a graph where the probability that a node has k links to other

nodes follows a power law

P (k) ∼ k−γ , (4)

where usually 2 < γ < 4. We prepare a number of different networks (typically of

the order of 100) with a given γ value using the configuration model: First, the

number of links for each node is determined by drawing random numbers from the

distribution (Eq. (4)) and then links are established between randomly chosen pairs

of nodes. Care is taken to avoid self-links or double links between two nodes. This

process may create isolated clusters of nodes, so in our simulations we only keep

the largest cluster in the system which (depending on γ) comprises 35–100% of the

number of system nodes N .

Individuals are randomly placed on the system nodes and move along the links.

A person on a node with k connections choses randomly one of the connected nodes

with probability 1/k and tries to jump there. If the node is occupied a fight takes

place under the same rules as in the case of the lattice.

3. Results

In Fig. 1(a), we present the distribution of q for different population densities p,

for networks with γ = 3.0, and N = 105 nodes. We have verified that the observed

behavior is in general valid for other values of γ as well. When p is very small, there

are only rare encounters between the individuals and all winning probabilities are

equal to 0.5, which yields a delta function distribution up to p = 0.04. When p

becomes greater than p = 0.05 the form of the distribution changes drastically.

The peak is getting lower, until it completely dissapears. Now, in the region around

p = 0.1 all winning probabilities are almost equiprobable and evenly distributed

among the population. Upon further increasing p a strong polarization arises in the

population with most people having a vanishing winning probability. Very few indi-

viduals have intermediate values of q, and another peak appears in the distribution

close to the area of complete dominance q = 1. The intensity of this peak is lower

than the peak at q = 0, indicating that the clique of “strong” individuals has fewer

members than the community of low-“strength” members.

Comparison with the case of a lattice (shown in Fig. 1(b)) reveals some in-

teresting features. The general behavior is similar (going from a delta function to
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Fig. 1. Evolution of the distribution P (q) with increasing density p of the population, (a) on the
largest cluster of a network with γ = 3.0 and N = 105 nodes, and (b) on regular two-dimensional
lattice.

uniform distribution to increasing peaks at the edges of the distribution). However,

the range over where these transitions take place is very different, with networks

leaving the egalitarian state in much lower densities (notice the logarithmic axis of

p in Fig. 1(a)). More important is the observation that on a lattice the two peaks

of the winning probability distribution at high population densities are completely

symmetric. This symmetry is due to the homogeneity of the lattice, contrary to the

result for the scale-free networks. On a network, an individual with high winning

probability placed on a hub, will fight against many opponents who have lower

q. These low-q individuals at the branches of the hub try to pass through the

hub, where they will probably lose the fight. In this way, they will become weaker
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while they will further strengthen the already strong person. In practice, one strong

individual can keep a quite large number of weaker people into a losing state, which

is the mechanism underlying the observed asymmetry in the two peaks. In general,

roughly 60–65% of the individuals belong to the q ∼ 0 community and 20–25%

belong to the q ∼ 1 clique.

The observed change in the distribution shape with increasing p already hints

the existence of a sharp phase transition. This transition is indeed verified by our

simulations, when using our order parameter σ. The results are presented in Fig. 2.

The critical threshold for all γ values is significantly lower than in the case of

lattices (where pc = 0.32 is confirmed). In fact, when γ = 2.25 or γ = 2.5 there

is almost no threshold and an hierarchical society emerges as soon as there is a

nonzero population on the lattice, due to the frequent encounters. For γ ≥ 3, the

threshold has a finite value, which is still in low densities, of the order of 0.05.

It is also noteworthy that for networks with low γ, the asymptotic value of the

order parameter is smaller than the one for networks with large γ values. This

shows that the most-connected networks initially establish an hierarchical society

at lower densities than less connected networks, but retain a lower level of hierarchy

at larger densities.

The network heterogeneity also introduces another effect, apart from moving

the critical threshold closer to p = 0. For concentrations close to criticality from
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Fig. 2. Order parameter σ as a function of the population density p for scale-free networks with
exponent γ = 2.25, 2.5, 3.0, and 3.5 (shown on the plot). Results were averaged over 100 different
network realizations of N = 105 nodes, using typically 105 steps per run.
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below, the behavior of σ in networks of the same γ may be very different. Thus,

for e.g., γ = 3.0 and p = 0.05, in most realizations the value σ vanishes in a few

hundrend steps. In a significant percentage (roughly 10–15%) of the realizations,

though, we have observed that σ would retain a large value and fluctuate around

σ = 0.3 even after 104 steps. Inspection of these realizations revealed that almost all

of them finally converge to σ = 0, but the time for equilibration may be of the order

of 106 steps or even more, while at the same time the fluctuations in the value of σ

with time are large (σ can assume values very close to 0 or rise up to 0.45, before

settling to σ = 0). These long relaxation times and the wide dispersion of σ show

that a society with a density close to the criticality on a scale-free network may

remain in turbulence for a long time, and even a small number of individuals may

separate into different hierarchies for a significant duration, before finally settling

to an egalitarian society.

Finally, we studied the effect of the network size on our presented results (Fig. 3).

The curves seem to converge for networks of N = 105–106 nodes. For a given γ value,

all network sizes used follow roughly a common curve at large population densities.

The transition threshold, on the other hand, varies with N . Increasing the network

size leads to a lower transition value pc. The value of pc for γ = 2.5 tends to 0,

for large enough networks, while for γ = 3.0 it tends to a small value of around

pc = 0.04. Inspection of other γ values indicates that in the range 2 < γ < 3 the

value of pc tends to zero with increasing network size, while when 3 < γ < 4 the

transition point is around pc = 0.05.

In the inset of Fig. 3(b), the threshold density value pc is presented as a function

of the network size N , for γ = 3.0.a It seems that this threshold value converges to-

wards its asymptotic value by following a power law pc ∼ k−a, with an approximate

exponent of a = 0.3, before settling to a constant value that remains unchanged

with increasing N (at least for networks up to N = 106 which are the largest studied

in this work).

4. Conclusions

In this work, we studied the model of Bonabeau et al. for the case where the popula-

tion moves on the nodes of a scale-free network. A number of important differences

were observed, as compared to the case of lattice diffusion. The heterogeneity of

the scale-free structure and the different behavior of the diffusion process strongly

affect the results of the model. For example, it is known that diffusion is not a very

efficient process on networks, in the sense that a random walker can never really

get away from the origin on finite-size networks.8,9 This factor causes the individu-

als to remain close to each other and a large number of encounters take place, even if

there are only few individuals. This results in an extremely low value of the density

threshold that separates egalitarian from hierarchical societies. In fact, for γ < 3

aIn Fig. 3(b), it is obvious that for small networks the transition is no longer sharp, so we chose
to identify pc as the approximate value where σ first assumes a nonzero value.
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Fig. 3. Order parameter σ as a function of the population density p for scale-free networks of varying sizes from N = 50 to N = 106. Results for (a)
γ = 2.5 and (b) γ = 3.0. Inset of (b): Threshold density pc as a function of the network size for γ = 3.0.



September 2, 2005 18:21 WSPC/141-IJMPC 00793

1336 L. K. Gallos

there is a strong indication from the simulations that pc = 0, at least for large

network sizes N .

The number of individuals with strong probability of winning is also significantly

lower than the number of people that cannot easily win a fight and thus climb in the

hierarchy. This asymmetry is not observed in lattices, where the isotropic environ-

ment of motion equally favors the development of the two separated communities,

but with equal number of members.

After completion of this work, we were informed about two papers on similar

problems.10,11 In Ref. 10, an interesting extension was proposed, where there is

no spatial component in the problem, and each agent may interact with any other

agent. The system was studied under different memory factors f , where the rate

of memory fading is varied, leading to a phase transition at a critical value fc. In

Ref. 11, an asymmetry was introduced in the lattice version of the model, where

a fight loss results in a penalty for the history parameter h greater than 1, while

the gain remains 1 (such an asymmetry emerges naturally in a scale-free network

without this rule, as we have already discussed). In Fig. 3 of the same paper,

there are also results for σ as a function of p for the case of a Barabasi–Albert

network (which is known to yield an exponent γ ' 3). A direct comparison between

our model and this BA network is not possible, mainly because asymmetry was

introduced in that case and because the size of the BA network was not mentioned

in the paper. The location of the crossover point at pc = 0.19 seems close to our

results for a scale-free network of γ = 3.0 and N ∼ 103. The transition in our case,

though, is much sharper.
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