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Scale-free networks resistant to intentional attacks
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Abstract – We study the detailed mechanism of the failure of scale-free networks under intentional
attacks. Although it is generally accepted that such networks are very sensitive to targeted attacks,
we show that for a particular type of structure such networks surprisingly remain very robust even
under removal of a large fraction of their nodes, which in some cases can be up to 70%. The degree
distribution P (k) of these structures is such that for small values of the degree k the distribution is
constant with k, up to a critical value kc, and thereafter it decays with k with the usual power law.
We describe in detail a model for such a scale-free network with this modified degree distribution,
and we show both analytically and via simulations, that this model can adequately describe all
the features and breakdown characteristics of these attacks. We have found several experimental
networks with such features, such as for example the IMDB actors collaboration network or the
citations network, whose resilience to attacks can be accurately described by our model.
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A large number of diverse systems in society, nature
and technology can be described by the concept of a
network [1,2]. In a network the form of inter-relations
between the system parts determines many structural and
dynamic properties of the system. One such property that
has received considerable attention is the robustness of
a network under intentional attack [3,4]. In the course
of such an attack nodes of the network are removed in
decreasing order of their degree k (number of connections
to other nodes). This is considered to be the most
harmful type of attack on a network, since the removal
of the hubs results in the largest possible damage. In
fact, this vulnerability of the networks to attacks has
been described as their Achilles’ heel [3], because it
is generally accepted that scale-free networks are easily
destroyed under intentional attacks. This removal process
has many and important implications, since depending
on the application, it may describe the resilience of a
network, such as the Internet, or the required number of
vaccinations for immunization considerations, etc.
For a scale-free network, where the probability that a

node has a given number of links decays as a power-law, it
has been shown that the critical percentage pc of removed
nodes that results in network disintegration is very low
(of the order of a few percent) [4,5]. It is, thus, a well-
established fact, supported by exact analytic results and
simulations of attacks on model and real-life networks,

that a scale-free network is very vulnerable to intentional
attacks (where pc is close to 0), although the same network
is extremely robust under random node failures (where
pc � 1) [6].
In this letter we show that there exists a large class

of networks that are usually found in nature and society
and have already been characterized as scale-free, but
nevertheless remain robust against removal of the most
connected nodes. We first present the results for real-
life networks and then introduce a modified version for
the degree distribution of scale-free networks, for which
our analytic and simulation treatment support these
findings.
To demonstrate this issue we performed intentional

attacks and random nodes removal to many different
real-life networks. The critical point was calculated via
two distinct methods. In the first method, during the
removal process we monitored the value of the parameter
κ≡ 〈k2〉/〈k〉, where κ is the connectivity parameter, and
which has been shown to be a measure of the global
network connectivity [6,7]. A value of κ< 2 signifies the
disintegration of a network into isolated clusters. The
second method was a direct measurement of the largest
cluster size. The value of pc was identified as the one
where this size assumes for the first time a value close
to zero. The two methods coincide only when the network
is “random” and uncorrelated, in the sense that there is
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Fig. 1: Percentage of nodes, P∞(p), belonging to the largest
cluster after removal of a fraction p of nodes, as a function of
p. The results correspond to intentional attacks on a number
of different networks (shown in the plot).

Table 1: Critical fraction pc for intentional attacks and random
removal on different networks.

Network Intentional Random
Configuration model (γ = 2.5) 0.055 0.99
Online communitya 0.04 0.90
WWW (nd.edu)b 0.10 0.99
IMDB actors collaborationb 0.62 0.99
HEP-TH arxiv.org citationsc 0.68 0.98

a(pussokram.com) Data described in ref. [8].
bhttp://www.nd.edu/∼networks/resources.htm.
chttp://vlado.fmf.uni-lj.si/pub/networks/data/hep-th/

hep-th.htm.

no inherent organization (or equivalently degree-degree
correlations) in the network. In a clustered network,
though, where these correlations are present, such as the
IMDB actors network, the two methods give different
results (pc = 0.96 with the first method, but pc = 0.62 with
the second). Here, we considered the pc value derived
by the largest cluster size calculation. The corresponding
results for the fraction of nodes P∞(p) that belong to
the largest cluster of the network during an intentional
attack are shown in fig. 1, as a function of the percentage
p of removed nodes. While the size of the spanning cluster
falls rapidly in most cases (similarly to a model random
network) there are some systems where this size remains
significant even for larger values of p.
In table 1 we summarize the numerical results we

obtained for the critical threshold pc of the networks
presented in fig. 1. Although many of these systems
behave in a similar way to the configuration model
network, there is a number of networks, such as actors
collaboration and science citations, where the intentional
attack requires removal of a considerable portion of the
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Fig. 2: Degree distributions for IMDB actors (filled symbols)
and HEP citations (open symbols). The solid line represents a
typical degree distribution (eq. (1)) that we used as a model.
Inset: Percentage of nodes belonging to the scale-free part of
the distribution as a function of γ. From top to bottom: kc = 2,
3, 5, 10, and 50.

network nodes, which is of the order of 65%. In order to
outline the common feature of these networks, in fig. 2
we present their degree distribution. These distributions
have a flat or rising part at low-degree nodes and only
after a threshold value the distribution decays as a
power law. We will show that this feature alone is
enough to render a network resistant to attacks, while
the resilience to random node removal remains intact, as
we have verified with simulations that show that in this
case the critical threshold remains the same as in simple
scale-free networks, i.e. pc→ 1.
The analytical considerations in the current work

apply to simple and random networks, where connections
between nodes are completely random and the network
does not include any self-loops or multiple links between
two nodes. The construction of a network for our numer-
ical calculations follows a slightly modified version of
the configuration model. We start with N unconnected
nodes and to each node i we assign a degree ki from a
given distribution P (k), so that each node has initially a
number of unconnected links. We randomly choose two
of these unconnected links. If these links belong to the
same node or they belong to two nodes that are already
connected we ignore this selection and randomly choose
two other unconnected links. Otherwise, we establish
a connection between these two nodes. We repeat this
procedure until all nodes have reached their pre-assigned
connectivity. The use of this method leads to a simple
network (i.e. one without self-loops and multiple links)
where the degree distribution follows the pre-defined
P (k) function. We do not impose any upper cutoff for
this distribution, so that correlations between degrees are
similar to those of a network with completely random
connections and no upper cutoff.
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We consider networks whose degree distribution is
uniform for all k values up to a threshold value kc, while
for larger k values it decays as a power law k−γ , where γ
is a parameter with typical values in the range 2–4. The
exact form of the distribution, also plotted in fig. 2 for
kc = 50 and γ = 2.5, is

P (k) =

{
A, 1<k < kc,
Bk−γ , k� kc,

(1)

where the values for the A and B constants are

A=
γ− 1

kcγ− γ+1 , B = k
γ
cA . (2)

These values are derived by the requirement that the
distribution is properly normalized and continuous. The
fraction of the nodes that belong to the scale-free part of
the distribution (i.e. nodes with k > kc) is shown in the
inset of fig. 2 for different values of kc as a function of γ.
We can conclude that the network retains a substantial
scale-free character in practically all cases studied (note
also that even for pure scale-free networks a large portion
of the nodes has k= 1).
We calculate the critical threshold pc for such a

network based on ideas introduced by Cohen et al. [4] and
Dorogovtsev and Mendes [9]. We employ a continuum
approximation where the degree of a node is treated as
a continuous variable. Nodes are removed according to
their initial degree, so that the intentional attack finally
results in the disruption of the network. We consider that
the degrees of the nodes for the network at criticality, i.e.
just before disruption, are given by the parameter k̃, with
corresponding averages

〈k̃〉=
∫ K̃
1

kP (k)dk , 〈k̃2〉=
∫ K̃
1

k2P (k)dk . (3)

The effect of an intentional attack is to remove all nodes
of a network whose degree is larger than a cutoff value
K̃, i.e. k̃ ∈ [1, K̃]. This also implies that pc equals

pc = 1−
∫ K̃
1

P (k)dk=

∫ ∞
K̃

P (k)dk , (4)

where the first form is simpler to compute when K̃ < kc
and the second form when K̃ > kc. At the same time,
removal of a node leads to removing all its links to other
nodes. We consider random networks with no correlations
in the nodes connections, which means that a removal of
a node results in removal of random links with probability

p̃=

∫ ∞
K̃

kP (k)dk∫ ∞
1

kP (k)dk

= 1− 〈k̃〉〈k〉 . (5)

It has been shown [6,7] that a random network loses
its large-scale connectivity after the removal of a critical
fraction pc of nodes, according to

pc = 1− 1

κ− 1 , (6)

where κ≡ 〈k2〉/〈k〉. This equation has been shown in
ref. [4] to be valid for removal of either nodes or links.
As explained in detail there, an intentional attack leads
to the equivalent of a scale-free network with upper cutoff
K̃ where a random fraction p̃ of nodes has been removed.
Because of the random character of the network all the
links have the same probability of being removed, and

this results to a new degree disribution P̃ (k). This fact is
then used to prove eq. (6). We can then use this equation
for the network resulting after the attack, by substituting

a) pc with p̃ from eq. (5) and b) κ= 〈k̃2〉/〈k̃〉. After a few
trivial steps eq. (6) becomes

〈k̃2〉− 〈k̃〉= 〈k〉 . (7)

This formula, which is exact, has been already proven in
refs. [4,9].
In order to use eq. (7) we need to know whether the

value of K̃ is larger or smaller than the threshold value
of the distribution kc, so we consider each case separately.
Calculation of the integrals involved yields

〈k̃〉=



A

2
(K̃2− 1), K̃ < kc,

A

2
(k2c − 1)+

B

γ− 2(k
2−γ
c − K̃2−γ), K̃ > kc,

(8)

and

〈k̃2〉=



A

3
(K̃3− 1), K̃ < kc,

A

3
(k3c − 1)+

B

γ−3(k
3−γ
c − K̃3−γ), K̃ > kc.

(9)

The average value of the initial degree distribution P (k)
(eq. (1)) can be approximated with the assumption that
kmax =∞. However, for low γ values this assumption does
not work well and for a finite-size network we should
compute the integral up to the maximum value kmax =K,
which can be found from the relation

∫∞
kmax
P (k) = 1/N ,

and is given in our case by K = ((γ− 1)/BN)1/(1−γ).
This results in a correction to the average value of the
unperturbed distribution, which finally becomes

〈k〉= A
2
(k2c − 1)+

B

γ− 2k
2−γ
c − B

γ− 2
(
γ− 1
BN

) γ−2
γ−1
. (10)

The third term is important only for finite-size networks
and vanishes as N →∞.
Combining eqs. (7)–(10) we get

2K̃3−3K̃2= 3γk
2
c − 4γ+8
γ− 2 − 6k

γ
c

γ− 2
(
γ− 1
BN

)γ−2
γ−1
, K̃ < kc,

kc

γ− 3

(
K̃

kc

)3−γ
− 1

γ− 2

(
K̃

kc

)2−γ
=

γkc

3(γ− 3) −
γ

γ− 2 +
2

3k2c
+
kγ−2c

γ− 2
(
γ− 1
BN

)γ−2
γ−1
, K̃ > kc.

(11)
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Fig. 3: Critical fraction pc of removed nodes for networks that
undergo an intentional attack, as a function of the exponent
γ. From top to bottom: kc = 50, 20, 10, 5, 4, 3, 2 and 1. Thick
lines represent the infinite-size numerical solution of eqs. (11)

and (13), dashed lines represent the same solution for N = 106,
and filled symbols are simulation results on a network of size
N = 106 nodes. The bottom curve for kc = 1 is identical to the
solution for pure scale-free networks (ref. [4]). The empty circles
denote the solution of eq. (12), where the value of K̃ switches
from K̃ > kc to K̃ < kc.

Solving the above equations for kc = K̃, we can find the

γ value for which the lowest degree K̃ of the nodes that
need to be removed switches from K̃ > kc to K̃ < kc. This
γ value is

γ =
2k3c − 3k2c +4
k3− 3k2+2 . (12)

We can now compute the value of K̃ from eq. (11) and
substitute it to eq. (4), which can also be written as

pc =



kcγ− K̃(γ− 1)
kcγ− γ+1 , K̃ < kc,

A

3
(k3c − 1)+

B

γ− 3(k
3−γ
c − K̃3−γ), K̃ > kc.

(13)

The numerical solution of eqs. (11) and (13) is shown
in fig. 3 as a function of γ for different values of the
threshold value kc. In the same figure we also plot results
of simulations on networks that were created with the
configuration model. The size of these networks was
N = 106 nodes and their degree distribution obeys eq. (1).
During the attack process we removed nodes in decreasing
order of their degree and monitored continuously the
value of κ until it became less than 2. The percentage
of the removed nodes up to that point corresponds to
the critical value pc. Note that this method does not
have the problems described above, since it is applied to
the randomized networks created via the configuration
model. We verified this statement by also comparing to
the results from the largest cluster size method.
Our results for kc = 1 coincide with the solution

provided in ref. [4], as can also be seen numerically from
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Fig. 4: Variation of the critical threshold pc with the network
size N for different values of γ and kc. The effect of the size on
the threshold is in general not significant, with small exceptions
for γ values close to 2.

eqs. (11) and (13). Comparison of the curves in fig. 3
for kc > 1 to the intentional attack on regular scale-free
networks shows a dramatic increase in the value of
pc, over the entire γ range. As the threshold value kc
increases, the stability of the network is further enhanced.
Even for kc = 2 we observe a significant influence in the
resilience of the network, where pc is usually more than
two times larger than for the case of kc = 1. For kc = 5 the
critical fraction is already above 30%, while when kc = 10
the value of pc lies in the range of 50%. For even larger
values, such as kc = 50 which as can be seen in fig. 1 is
not unusual for real-world networks, the networks exhibit
a remarkable resilience to intentional attacks, with a
pc value close to 70%. Notice here, that the variation
of pc for γ > 2.5 is almost independent of γ. Thus, the
important part of the distribution for robustness is the
low-degree part and in our model networks its extent in
the k-range. On the contrary, an exponent γ > 2.5 for the
decaying part does not really influence the attack result.
As the value of γ approaches 2, though, the decrease in
the value of pc is quite sharp, with the infinite-size result
pc = 0 for γ = 2. For finite size networks this decrease is
much slower and the critical threshold remains significant.
The stability of the solution with respect to the network

size N is shown in fig. 4. The value of pc is practically
not influenced by N when γ is not close to γ = 2, such as
γ = 2.5 or larger. For these smaller γ values the critical
threshold exhibits larger variations, such as in the case of
γ = 2.1 presented in the plot. Even in this case, though,
when the network size becomes larger than a moderate size
of N ∼ 104 then the critical threshold remains practically
constant.
The explanation behind the enhanced stability can

be largely attributed to the increasing average number
of connections per node when the kc value increases.
Although a large value for 〈k〉 means obviously an
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enhanced robustness for the network, we also find that
the network is resilient even for very small kc values.
Indeed, in real networks it is usually not easy to clarify
the exact behavior of the degree distribution at very small
degrees, and a difference between kc = 1 and kc = 2 or 3
can easily be unnoticed.
These findings suggest a structure that is very robust

against both random failures and targeted attacks. This
optimization is desirable in most cases and the structure
itself, which as we have seen emerges naturally in many
instances, may be used to efficiently protect a network
against most attacks. On the contrary, for immunization
purposes, the existence of such networks may present
difficulties for efficient strategies. Even if global knowledge
of the entire network structure is available, the required
number of vaccinations remains very high. In such a case,
it is very important to acquire as accurate information
on the network structure as possible, and especially for
the low-degree part, because a simple power law decay of
the degree distribution over a large degree range does not
guarantee efficient immunization, if at small values of the
degree this power law decay is not obeyed.
A study for networks that offer better resilience

to attacks than simple scale-free networks has been
performed in ref. [10]. The authors find that the optimal
network design for optimization against both random and
intentional attack is one where all nodes have the same
degree k1, except for a “central” node with a large degree

k2 ∼N2/3. That work, though, has a different scope than
ours since the authors kept in all instances the average
value 〈k〉 constant, while in our work this average value
is modified as we modify kc.
In summary, we have studied intentional attacks on

networks whose distribution is uniform for low degrees k
and decays as a power law for larger k. Such a structure is
very robust against both random and intentional attacks,
and outlines the importance of the low-degree nodes in
the connectivity of the structure. Although hubs connect

a large part of the network, it is true that they will be
unavoidably removed sooner or later, depending on the
removal strategy. However, it seems that the form of the
distribution at low degrees is equally or more important
than the existence of the hubs and may render a network
vulnerable or stable against intentional attacks.
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