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Cell differentiation in multicellular organisms is a complex process
whose mechanism can be understood by a reductionist approach,
in which the individual processes that control the generation of dif-
ferent cell types are identified. Alternatively, a large-scale ap-
proach in search of different organizational features of the
growth stages promises to reveal its modular global structure with
the goal of discovering previously unknown relations between cell
types. Here, we sort and analyze a large set of scattered data to
construct the network of human cell differentiation (NHCD) based
on cell types (nodes) and differentiation steps (links) from the fer-
tilized egg to a developed human. We discover a dynamical law of
critical branching that reveals a self-similar regularity in the mod-
ular organization of the network, and allows us to observe the net-
work at different scales. The emerging picture clearly identifies
clusters of cell types following a hierarchical organization, ranging
from sub-modules to super-modules of specialized tissues and or-
gans on varying scales. This discovery will allow one to treat the
development of a particular cell function in the context of the com-
plex network of human development as a whole. Our results point
to an integrated large-scale view of the network of cell types sys-
tematically revealing ties between previously unrelated domains in
organ functions.

complex network ∣ modular organization ∣ self-similarity ∣ stem cells

The cell differentiation process plays a crucial role in the pre-
natal development of multicellular organisms. Recent ad-

vances in the research on stem cell properties and embryonic
development have uncovered several steps in the differentiation
process (1–7). Single and multiple sequences of cell differentia-
tion have been identified through in vivo observations of a parti-
cular embryo during early stages of development and through
pathology studies of miscarriages during late stages of the pro-
cess. While the identification of each cell differentiation step
has been the subject of intense research, an integrated view of
this complex process is still missing. Such a global view promises
to reveal features associated with the large-scale modular orga-
nization of the cell types (5–12) with the purpose of discovering
functional modules between cell types by using theoretical net-
work analysis for community detection (9–11). In this letter,
we take advantage of the current knowledge on the sequence
of cell differentiation processes that is spread over a vast specia-
lized literature (1–6, 13–27) (SI Appendix), to reveal and charac-
terize the topological and dynamical features associated with the
network of human cell differentiation (NHCD).

I. Results
We construct the NHCD by systematically gathering the scattered
information on the evolution of each cell type present in the em-
bryo and fetus from a predecessor with a higher degree of differ-
entiation potential into a more specialized type. The process of
cell differentiation is then mapped onto a complex network that
consists of 873 nodes connected through 977 edges. The nodes in
the network represent distinct cell types reported in the literature

(1–6, 13–27) and the edges represent the association between two
cell types through a differentiation event.

The initial steps of the NHCD are shown in the Inset of Fig. 1,
while the resulting network structure is shown in themain panel of
Fig. 1 (SIAppendix). The fertilized egg is followed by the ball stage,
and the formation of the primary germ cell layers. Currently, it is
known that until the ball stage, cell division is symmetric and pro-
duces further totipotent stem cells (1). These cells then give rise
to all the differentiated tissues of the organism as well as the ex-
traembryonic tissues (placenta, umbilical cord, etc.). Moreover, in
the course of the entire process of organism formation, there is a
monotonic decrease in the differentiation potential (totipotent →
pluripotent → multipotent → unipotent cells) accompanied with
an increase in cell specialization.

Certain types of cells can be generated following more than
one path from the fertilized egg. This process generates some
closed loops of edges in the network. The NHCD comprises
529 branches of different lengths with each branch ending when
the cell types do not undergo further differentiation. Note, how-
ever, that the most recent compilation of cell types in normal,
healthy, human adults done in (6) reports only 407 cell types.
Therefore, not all branch endpoints correspond to cell types in
born humans. Thus, not all 873 cell types are present in a human
being. Among those absent are the placenta cells that are gener-
ated from the fertilized egg during embryo development, as well
as other somatic cell types that are important to control embryo
and fetus development. The cell types that survive in a human are
denoted by filled circles, while nonsurviving ones are indicated by
empty circles. The complete collected data are listed in the
SI Appendix and Dataset S1, including an enumeration of cells
and links between the cell types, their time of appearance in days
after fecundation (Ta), and the reference to the publications re-
porting each link. To the best of our knowledge, the structure
identified here provides the most complete schematic diagram
of the human differentiation process to date.

It is visually apparent from Fig. 1 that the NHCD has a promi-
nent modular structure. The continuous differentiation of cells
into more specialized functions naturally leads to the formation
of dense isolated clusters in the NHCD. As a first approach to
understand this modular structure, we cluster cell types in the net-
work of Fig. 1 according to their known functions; different colors
indicate 19 functional modules extracted from the literature
(C1-C19) (SI Appendix). The largest communities were extracted
from refs. 1–6, 13–27. There is, however, a certain degree of
arbitrariness in this modular structure as the separation of the
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nodes into communities in our dataset is not unique. For instance,
community C12, the neural lineage, could be divided into two
subcommunities, representing the neural and the supporting
(glial) cells (1–3, 5, 6, 1314). On the other hand, the neural system
module could be merged with the eye system module (1, 5, 6, 13)
on a larger scale because they have a common ancestral cell type.
Therefore, a finer or coarser community structure can be ex-
tracted from the data when we look at the whole network at dif-
ferent scales of observation; a modified module-detection algo-
rithm is needed to identify these communities in a systematic way.

Graph theoretical concepts allow us to unravel the scale de-
pendence of the modular structure of the NHCD. Graph theory
(11) defines the distance between two nodes (also called the che-
mical distance) as the number of links along the shortest path
between the nodes in the network. We use this notion to propose
a community detection algorithm that identifies modules of size ℓ
composed of highly connected cell types. The algorithm finds the
optimal tiling of the network with the smallest possible number of
modules, NB, of size ℓ (12) (each node is assigned to a module or

box and all nodes in a module are at distance smaller than ℓ).
This process results in an optimization problem that can be solved
by using the box-covering algorithm explained in Fig. 2A,
Materials and Methods Section III and reported in ref 28 as
the Maximum Excluded Mass Burning algorithm (MEMB, the
algorithm can be downloaded from http://lev.ccny.cuny.edu/
~hmakse/soft_data.html). The requirement of minimal number
of modules to cover the network (NB) guarantees that the parti-
tion of the network is such that each module contains the largest
possible number of nodes and links inside the module with the
constraint that the modules cannot exceed size ℓ. This optimized
tiling process gives rise to modules with the fewest number of
links connecting to other modules implying that the degree of
modularity, defined by (9–11, 29)

MðℓÞ≡ 1

NB ∑
NB

i¼1

Lin
i

Lout
i

; [1]

Fig. 1. Complex network representation of the human cell differentiation process. The first steps of the NHCD construction are shown in the Inset of this
figure. These steps, known to also be present in the formation of the majority of multicellular organisms, include the first cleavage of a fertilized egg, that is,
subsequently, followed by the ball stage and the formation of primary germ cell layers, namely, the ectoderm, mesoderm, and endoderm. The fertilized egg is a
totipotent stem cell. The blastocyst, in turn, gives rise to both trophoblast and inner cell mass. These two cells further differentiate into other types of cells, and
so on. Following the above process until the fetus is fully developed yields the complex network shown in this figure. Each node, plotted as a circle, corresponds
to a cell type and the edges to a differentiation step. The entire network originates from the fertilized egg (denoted by a Red Square) and leads to the
specialized cells of a developed human. Filled Circles correspond to nodes that survive at the end of the development process, whereas Empty Circles corre-
spond to nonsurviving cell types. Nodes in communities of known functions from the literature are indicated by different colors, except for those cell types with
no functional annotation (see SI Appendix and Dataset S1 for association to the known functions C1 to C19 extracted from the literature).
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is maximized. Here, Lin
i and Lout

i represent the number of links
that start in a given module i and end either within or outside i,
respectively. Large values ofM (Lout

i → 0) correspond to a higher
degree of modularity. The value of the modularity of the network
M varies with ℓ, so that we can detect the dependence of mod-
ularity on different length scales, or equivalently how the modules
themselves are organized into larger modules that enhance the
degree of modularity.

For a given ℓ, we obtain the optimal coverage of the network
with NB modules [we use the MEMB algorithm (28) explained in
Fig. 2A and Materials and Methods]. Analysis of the modularity
(Eq. 1) in Fig. 3A reveals a monotonic increase of MðℓÞ with

a lack of a characteristic value of ℓ. Indeed, the data can be ap-
proximately fitted with a power-law functional form:

MðℓÞ ∼ ℓdM [2]

that is detected through the modularity exponent dM . We char-
acterize the network by using different snapshots in time and we
find that dM ≃ 2.0 is approximately constant over the time evolu-
tion (Fig. 3A). This value reveals a considerable degree of mod-
ularity in the entire system [for comparison, a random network
has dM ¼ 0 and a uniform lattice has dM ¼ 1 (29)], as evidenced
by the network structure in Fig. 1. The lack of a characteristic
length-scale in the modularity shown in Fig. 3A suggests that the

A

B

C

Fig. 2. Detection of modules and the network of modules at
different scales. (A) Demonstration of the box-covering algo-
rithm for a schematic network, following the MEMB algorithm
in refs. 12 and 28 (SI Appendix). We cover the network with the
smallest possible number of boxes for a given ℓ value. This is
done in a two-stage process: (i) We detect the smallest possible
number of box origins (shown with Cyan color) that provide the
maximum number of nodes (mass) in each box, according to the
following optimization algorithm: We calculate the mass asso-
ciated with each node, and pick the first center as the node with
largest mass and mark the nodes in this box as tagged. We
repeat the process from the remaining noncenter nodes to iden-
tify a second center with the highest mass, and so on.
(ii) We build the boxes through simultaneous burning from
these center nodes until the entire network is covered with
boxes. For example, at ℓ ¼ 3 there are four boxes where the
maximum distance between any two nodes in a box is smaller
than ℓ. Similarly, we can cover the same network with two boxes
at ℓ ¼ 6. These two boxes are the result of merging two of the
four boxes at ℓ ¼ 3. (B) Detail of NHCDmodules detected by the
above box-covering algorithm for two particular functions. The
algorithm detects a hierarchy of sub-modules, known functions
and super-modules of size ℓ plotted in different colors. We show
the identified modules corresponding to C12-neural system and
C13-eye system (Fig. 2C and SI Appendix) that first appear at ℓ ¼
15 and ℓ ¼ 11, resp. At other scales the box-covering algorithm
detects new functional relations between cell types expressed in
the obtained sub and super-modules. For instance, at ℓ ¼ 11 the
neural lineage is further divided into two sub-modules, whereas
at ℓ ¼ 19 the two functions merge into a super-module. (C) The
network of modules at different ℓ values, as detected through
the box-covering algorithm. Every node corresponds to one of
the three following types, in terms of increasing scale: (i) Sub-
modules (small Gray Dots) that are fractions of a fully functional
module, (ii) Known functional biological modules (Colored
Circles), whose color corresponds to the functions C1-C19,
and (iii) Super-modules (Pie-Charts) that represent the union
of more than one known functional module, described by
the colors of the pie-chart. The links that stem from known func-
tional modules and super-modules are shown in Red, and they
progressively span the entire network as we increase ℓ.
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modules appear at all length-scales, i.e., modules are organized
within larger modules in a self-similar way, so that the intercon-
nections between those clusters repeat the basic modular charac-
ter of the entire NHCD. Thus, the NHCD remains statistically
invariant when observed at different scales. Varying the module
size ℓ yields the scaling relation for the number of modules
(Fig. 3B):

NBðℓÞ ∼ ℓ−dB ; [3]

where dB represents the fractal dimension of the network (12).
We find that the fractal character of the modules is established
at the early stages, yielding dB ≃ 1.4 as early as 30 d (Fig. 3B). As
the network evolves, the fractal dimension increases slightly and
finally reaches dB ≃ 1.9.

The significance of Eq. 2 is that the modules need to be inter-
preted at a given length-scale. Figure 2B shows an example of
such hierarchical organization (Fig. 2C and the SI Appendix show
the full modular structure, while a list of detected modules ap-
pears in Dataset S2). Three types of communities of cell types
are clearly identified in Fig. 2B as we change ℓ. (i) The known
functional modules: The entire eye lineage (1, 5, 6, 13) is detected
as a single module by the box-covering algorithm at ℓ ¼ 11, while
the entire neural lineage (1–3, 5, 6, 13, 14) appears at ℓ ¼ 15.

Finer and coarser modules are identified by the algorithm. (ii)
Sub-modules: At ℓ ¼ 11 the neural lineage is split into the main
neural and the supporting glial cell modules, while for ℓ ¼ 7 sub-
modules are identified in the eye system. (iii) Super-modules:
When we increase the length to ℓ ¼ 19, the eye and neural system
form a single super-module. Thus, each cell type is connected to
other types according to which groups of nodes of all sizes self-
organize following a single principle. This property allows us to
renormalize the network (12) by replacing each detected module
by a single supernode to identify the network of modules as
shown in Fig. 2C. Following the evolution and interdependence
of these super-modules, as seen in Fig. 2C, identifies families of
cell types at varying scales. This modularity map is useful in pro-
posing future research ties between previously unrelated domains
in organ functions.

The dynamics leading to such a structure can be unraveled by
the study of the NHCD as a growth process. The knowledge of
the time of appearance of each cell type, Ta, makes it possible to
follow the cumulative growth of the embryo and fetus in terms of
the total number of cell types at time t, NðtÞ as well as the number
of cell types that eventually survive in the organism (Fig. 4A). As
expected, surviving cells emerge in the later stages of the gesta-
tion period. However, the difference between the total and the
surviving number of cell types indicates that generation of new
types of nonsurviving cells takes place even during the final ge-
station months.

The increase of the network size, NðtÞ, is initially approxi-
mately exponential and after t� ¼ 40 days changes into a slower
growth (Fig. 4A). Only a small percentage of the nodes grow with-
in a given time interval so that the network activity is focused in a
small number of them at a given time. The number of nodes that
differentiate at a given time are shown in Fig. 4B. We observe an
activity that increases monotonically up to around t� ¼ 40 days
and then drops to lower values. The crossover time t� ¼ 40 days
observed in Fig. 4A and B separates two regimes of growth and
approximately corresponds to the time below which most of the
cells have a plastic characteristic (i.e., the capability to differenti-
ate) and above which they start to become functional (1). Inter-
estingly, the two regimes observed in NðtÞ merge into a single
universal functional curve when we replot NðℓN1Þ as a function
of the chemical distance to the fertilized egg, ℓN1 (Fig. 4C). This
result suggests that the topological distance in the network ℓN1 is
the natural variable to characterize the growth process in a
universal form rather than the time. The dynamic of NðℓÞ follows
a typical logistic (Verhulst) process of population growth where
the rate of growth is restricted by environmental limitations:

dN
dℓ

¼ rN
�
1 −

N
Nf

�
; [4]

with solution,

NðℓÞ ¼ Nf
expðrℓÞ

Nf þ ðexpðrℓÞ − 1Þ [5]

(see the fitting in Fig. 4C), where Nf is the final number of cell
types and r ¼ 0.65 is the growth rate of cell types.

Analysis of the network connectivity reveals that the aver-
age number of links per node in the final stages of the entire
NHCD is hki ¼ 2.24 (Fig. 4D). Even though hki ≈ 2, there is a
broad degree distribution [scale-free (11), PðkÞ ∼ k−γ , γ ≃ 3.0,
and SI Appendix]. This implies that there is always a small number
of crucial cell types that differentiate much more than the others,
a fact that agrees with evidence on the existence of a few cells with
large plasticity potential. As this potential is rapidly lost after
40 d, cell types change their development ability in favor of the
organism life maintenance.

A

B

Fig. 3. Modular properties of the NHCD. (A) Degree of modularity of the
network, MðℓÞ, at different times, t (indicated in the figure), as a function
of the scale of observation, ℓ. (B) Number of boxes/modules, NB, versus
the size of the modules, ℓ, identified by the box-covering algorithm for
different networks at time t.
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The fact that the average degree is close to two implies that the
dynamical evolution of NHCD can be described by a critical
branching process where every node has a certain probability of
generating offsprings, in which case the critical condition for the
branching to continue is hki ¼ 2 (30). This effectively means that
each node needs to give at least one descendant for the network
to keep growing. If hki < 2, the growth would stop early, while for
hki > 2 the growth would be faster than exponential.

The network reaches the condition of criticality, hki ≈ 2, at
around t� ¼ 40 days (Fig. 4D) in conjunction with the transition
from plasticity to functional behavior. After this, the average de-
gree remains just above criticality to sustain a growth rate that
guarantees the network survival. The majority of the nodes pro-
pagate the growth in a single line, but there are nodes that gen-
erate significantly more descendants to generate the diversity
implied by the power-law distributions of degree and modularity.

II. Discussion
In summary, we present a large-scale study of the prenatal evolu-
tion of the human cell differentiation process from the fertilized
egg to a developed human. The process of human cell differen-
tiation can be mapped onto a complex network composed of cell
types and differentiation steps. This mapping allows us to study
the cell differentiation process with state of the art network the-
ory for community detection with the goal of identifying hitherto
unknown functional relations between cell types.

We discover a dynamical law of critical branching explaining
the emergence of the network topology that reveals a scale-invar-
iant modular structure of the network of cell types. The self-
similar modular features evidenced in Figs. 1, 2, and 3 are
established early in the process and remain invariant during
the evolution of the NHCD, although the network size changes
significantly.

By using this law, we are able to observe the network at dif-
ferent scales. The emerging picture clearly identifies clusters
of cell types, or modules, and their connectivity to other modules
within its own and other functions. The resulting hierarchical or-
ganization consists of sub-modules, known biological functions,
and super-modules of specialized tissues and organs emerging
on varying scales. This discovery is useful in proposing future re-
search ties between previously unrelated domains in organ func-
tions in a systematic way. Furthermore, this information could be
of importance in providing predictions of functional attributes to
a number of identified modules of cell types in the NHCD.

III. Materials and Methods
The detection of modules or boxes in our work follows from the application
of the box-covering algorithm (12, 28) at different length-scales. The algo-
rithm can be downloaded at http://lev.ccny.cuny.edu/~hmakse/soft_data.
html. In box covering we assign every node to a module, by finding the mini-
mum possible number of boxes, NBðℓÞ, that cover the network and whose
diameter (defined as the maximum distance between any two nodes in this
box) is smaller than ℓ. These boxes are characterized by the proximity
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Fig. 4. Growth properties of the NHCD. (A) Number of cell types in the network,NðtÞ, as a function of time. We find precise information about the appearance
time, Ta, for 782 among the 873 cell types. Those cells with missing appearance time have not been taken into account in this plot. Also shown are the time
evolution of the number of surviving and nonsurviving cells. (B) Number of nodes whose degree increases at time t (Red Histogram) and number of new links
appearing in the network (Blue Histogram) as a function of time. If all nodes were giving just one child then the two histograms would coincide. Inset: The
average number of new links per node at a given time can be found by dividing the two histograms in the main plot. This plot shows how intense is the activity
at that particular time. Despite the variation in activity, the new connections average around one that gives a critical branching ratio of hki≃ 2. (C) Number of
cell types versus the chemical distance to the first node, ℓN1. This distance is only determined by the connections between the cell types and is not influenced by
the appearance time so that we include all 873 cell types. (D) Average degree hki of the network as a function of time showing that the network achieves the
condition of critical branching process hki ≈ 2 at around t� ¼ 40 days.
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between all their nodes, at a given length-scale. Different values of the box
diameter ℓ yield boxes of different size. These boxes are identified as
modules that at a smaller scale, ℓ, may be separated but merge into larger
entities as we increase ℓ.

In this work we implement the Maximum Excluded Mass Burning (MEMB)
algorithm from (28) for box covering. The algorithm uses the basic idea of
box optimization, where we require that each box should cover the maxi-
mum possible number of nodes, and works as follows: For a given ℓ, we first
locate the optimal “central” nodes that will act as the origins for the boxes.
This is done by first calculating the number of nodes (called themass) within a
diameter ℓ from each node. The node that yields the largest mass is marked
as a center. Then we mark all the nodes in the box of this center node as
“tagged.”We repeat the process of calculating themass of the boxes starting
from all noncenter nodes, and we identify a second center according to the
largest remaining mass, while nodes in the corresponding box are tagged,
and so on. When all nodes are either centers or tagged we have identified
the minimum number of centers that can cover the network at the given ℓ

value. Starting from these centers as box origins, we then simultaneously
burn the boxes from each origin until the entire network is covered, i.e., each
node is assigned to one box [we call this process burning because it is similar
to burning algorithms developed to investigate clustering statistics in perco-
lation theory (11)]. In Fig. 2A we show how box covering works for a simple
network at two different ℓ values.

This algorithm is driven by the proximity between nodes and the maximi-
zation of the mass associated with each module center (12, 28). Thus, it de-
tects boxes that maximize modularity (Eq. 1). In the case of MEMB, we have
the additional benefit of detecting modules at different scales so that we can
study the hierarchical character of modularity, i.e., modules of modules, and

we can detect whether modularity is a feature of the network that remains
scale-invariant.

The fractal dimension dB of a complex network is an exponent that
determines how the mass (equivalently: the number of nodes) around any
given node scales with the length that in networks corresponds to the short-
est distance between two nodes. To numerically measure this exponent we
optimally cover the network with boxes using the MEMB algorithm. A box is
a set of nodes where all distances ℓij between any two nodes i and j in this set
are smaller than a given value of ℓ, the box size. Although there is a large
number of coverings, for every value of ℓ we want to find the one that gives
the smallest possible number of boxes, NBðℓÞ. Varying ℓ then yields the
scaling relation (Eq. 3). A finite fractal dimension reveals fundamental orga-
nizational principles of the underlying network, namely a self-similar struc-
tural character, where the network is built in a similar way even though we
observe it at different length-scales. The boxes that are identified through
this process correspond to the modules at varying scales.
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