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The lack of large-scale, continuously evolving empirical data usu-
ally limits the study of networks to the analysis of snapshots in
time. This approach has been used for verification of network
evolution mechanisms, such as preferential attachment. However,
these studies are mostly restricted to the analysis of the first links
established by a new node in the network and typically ignore
connections made after each node’s initial introduction. Here, we
show that the subsequent actions of individuals, such as their sec-
ond network link, are not random and can be decoupled from
the mechanism behind the first network link. We show that this
feature has strong influence on the network topology. Moreover,
snapshots in time can now provide information on the mecha-
nism used to establish the second connection. We interpret these
empirical results by introducing the “propinquity model,” in which
we control and vary the distance of the second link established
by a new node and find that this can lead to networks with tun-
able density scaling, as found in real networks. Our work shows
that sociologically meaningful mechanisms are influencing net-
work evolution and provides indications of the importance of
measuring the distance between successive connections.

network generation methods | network density | network evolution

The explosion in network research has been largely driven by
the availability of big social data, by the analysis of social sys-

tems, and by studying the mechanisms behind the emergence
of behavioral networks (1–10). Network generation methods
are central in modeling network evolution and have helped us
understand many properties of these systems, even when only
a static snapshot is available. A large variety of mechanisms
exist which have been proposed and verified (11), such as the
famous preferential attachment principle (12), where nodes con-
nect with higher probability to higher connected nodes. Different
requirements may be imposed, such as requiring an unbiased
configuration (13), and the mechanisms are usually adapted to
the empirical systems that they attempt to explain.

In a typical network evolution model, new nodes are intro-
duced into the system and they become connected to existing
nodes according to certain rules. It is also possible that further
changes can take place in the network, such as redirection of
existing links, introduction of new links among existing nodes,
etc. Recently, for example, Redner and coworkers (14, 15) stud-
ied a copying model, which is based on duplication-divergence
mechanisms (16), and showed that a new node that inherits
a fraction of connections from its first link can give rise to a
diversity of topologies, mainly in terms of network density.

In the majority of these models, the rules for attaching a node
specifically target the identification of the first connection. When
a new node creates more than 1 connection, then the same rules
are typically applied to identify each one of those connections;
e.g., a node connects to m nodes via preferential attachment
(12). However, in a real evolving system the agents continue
adding links for a long time after they are introduced in the
network and it is highly unlikely that the processes of initial

introduction are simply replicated over the complete lifespan of
a node. This process of adding additional links is probably too
complicated to observe in real networks or to model accurately.
However, there is a tractable important question about the dis-
tance between the first m connections of a new node which has
not been explicitly addressed, even though it may be a key fac-
tor in defining central network properties, such as the network
density.

Here, we present a first step that considers mechanisms that
influence the choice of the second connection for newly intro-
duced nodes. We suggest a model that can quite accurately
capture the behavior of real-world evolution in empirical net-
works. The mechanism that we introduce here restricts the
distance between the first and second connections of a new node,
as measured prior to the node’s introduction. As we show, the
resulting network topology depends on the proximity of these 2
connections; we therefore call this the “propinquity model.”

As a first demonstration that this metric can provide meaning-
ful insight, we show that this distance does not behave trivially
in empirical networks (Fig. 1). The network evolution in the 3
presented networks is known and we are therefore able to mea-
sure the distance between the first 2 connections for each new
node just prior to the node’s introduction. The resulting distance
distribution cannot be characterized by a uniform distribution
within the network; i.e., the distance of the second connection is
not a randomly chosen quantity. On the contrary, each network
seems to have its own characteristic distribution for these dis-
tances. In social networks, for example, shorter distances seem
to be significantly preferred.

Significance

While many studies have focused on how new nodes make
connections as they enter a network, we instead consider
how choices of additional neighbors, after initial introduc-
tion, can shape patterns in emergent network structure. We
find the footprints of this type of emergence in real-world
networks and discuss how one could estimate the processes
driving topology by examination of static snapshots of net-
works through the lens of link density. Our approach yields
insight into network formation in applications ranging from
social behavior to drug discovery.
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Fig. 1. Probability that the second link connects to a node at a distance r
from the first node. We measure the probability distribution (Top) and the
cumulative distribution (Bottom) of the distance r between the first 2 neigh-
bors of a new node in a network. (Left to Right) Online social network in
University of California, Irvine (17) (N = 1, 893); high school friendship (18)
(N = 180); and Facebook wall messages (19) (N = 43, 953). Symbols repre-
sent the empirical results. The red lines correspond to the case where the
second node would be selected in random (q = 0 in the propinquity model)
(Fig. 2). The exponents q in the propinquity model that give the best fit to
the real data are shown in blue and represent the tendency of the distance
to be smaller than random. Note that propinquity does not explain well
the dynamics driving the Facebook wall messaging network for r = 1 and
r = 2, but works well for larger r. The origin for this could be that initiation
into a wall message network may be impacted more strongly by influence
external to the online network (i.e., alternative means of communicating
with friends and need for communication with friends of friends, apart from
Facebook wall messages) and thus slightly skewing the results. Note, how-
ever, that the total probability for r≤ 2 is still consistent with the model
prediction. Propinquity nevertheless offers meaningful and valuable insight
as r increases.

Using the underlying concept of our propinquity model, in this
paper we explain the observed distance distributions in Fig. 1
and use this insight to propose proximity as a metric for char-
acterizing the ongoing social dynamics of evolving networks in
meaningful behavioral ways. We show how this characterization
can lead to a systematic variation of network density, and we can
use this metric to distinguish between network structures even
when quantities such as the degree distribution and clustering
coefficient seem identical.

Model Description
Local Network Density. The underlying principle of network the-
ory is that link structure among nodes provides more information
than could be learned by examination of the nodes in isolation
(20). In other words, connectivity is the main factor that deter-
mines the network behavior and response. Typical methods used
to estimate the organization of links include, e.g., modularity
or community detection (21), fractal properties (22), transport
properties (23), percolation properties (24–26), etc. Surprisingly,
little work has been done on direct measurements of link density
in real networks [e.g., the concept of n-tangle density (27)]. How-
ever, the above approaches are mainly descriptive rather than
predictive and there is currently no generic framework to detect
potential mechanisms that explain the variation of local densities,
especially at different system scales.

In terms of characterizing emergent density properties, there
are 2 main families of growing network models. The most com-
mon mechanisms add a constant number of links for each node
and, as a result, the link density is also constant, easy to calcu-
late, and rarely given any further consideration [this is, e.g., the
case of the preferential attachment mechanism (12)]. The second

family of models uses a probabilistic mechanism of adding new
links and can lead to either sparse or dense networks, depending
on the model parameters [such as duplication-divergence mod-
els (28)]. In contrast to these 2 general cases, the propinquity
model leads to networks that have a known global density, but
(in contrast to earlier models) simultaneously enables a system-
atic variation of local density at different scales, as observed in
real networks.

By focusing on the time-ordered behavior of local links and
the resulting local density, and how this varies at different scales
within the network, we can explain the emergence of communi-
ties and understand differences in the types of social dynamics
that we observe in real-world networks. To quantify this local
link density, scale is determined by the number of nodes, n , in
a connected subgraph of the network. Formally, the link density
ρ in a graph with N nodes and L links is defined as the fraction
of the number of links over the maximum possible number of
links (29); i.e., ρ=L/[N (N − 1)/2]. To measure the local link
density we consider an induced connected subgraph of n nodes,
where we take into account all of the en existing links between
all pairs of nodes in the subgraph. We then define the local link
density as

ρn =
en

n(n−1)
2

. [1]

This allows us to study scaling of local link density as we vary the
size of the subgraph, n . As explained in detail in SI Appendix, the
behavior of this quantity is highly influenced by a trivial property.
This is because we restrict ourselves to connected subgraphs of
size n , which by definition requires all of the subgraphs to have
at least n − 1 links for connectivity. The simple solution that has
been suggested is to subtract n − 1 links from the numerator in
Eq. 1 (27). In real networks the density has been shown to scale
inverse linearly with the network size; i.e., ρn ∼n−1 +O(n−2)
(30, 31). This means that en ∼n +O(1+n−1) and the linear
term dominates the behavior of en . For sparse networks where
the prefactor of n is close to 1, if we simply subtract these links
from en , the density behavior will now depend on the higher-
order terms, which may scale in a different way than ρn . We
therefore apply here the recently defined metric (27) for the local
n-tangle (topological analysis of network subgraph link/edge)
density, tn , as

tn =
en − (n − 1)

n(n−1)
2
− (n − 1)

. [2]

The key feature in this definition is the removal of the n − 1 links
that are necessarily present in an induced subgraph to ensure
connectivity. We also remove the same number of links in the
denominator, so that tn remains properly normalized and ranges
from tn =0 in the case of a loopless tree subgraph to tn =1 for a
fully connected subgraph.

The Predictive Power of the Propinquity Model. For the model
to be useful as a predictive tool, we must be able to validate
hypotheses about the ways in which new nodes choose to con-
nect to the network by agreement with observations of real-world
network structures. There are already a large variety of network-
growing models in the literature (12, 32–35). Typically, starting
from a seed network, new nodes are introduced and attach
themselves according to certain rules, e.g., by connecting pref-
erentially to the most connected nodes. However, in many real
systems nodes have a restricted freedom or ability to reach all of
the available connections (36); thus the ability to create meaning-
ful, behavioral-hypothesis–driven growing models would vastly
expand our toolkit for understanding the mechanisms of ongoing
social dynamics.

To model the varying strength of preference as a function of
the network distance, we start with a small seed network of,
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e.g., N0 nodes connected to each other (indeed, any possible con-
figuration of a connected network does not influence the results).
The network grows by the introduction of a new node i at each
time step, when i creates m links toward the existing network.
The first link is created randomly by choosing a node j (either
preferentially or uniformly). The new node i then creates m − 1
additional links, where a node h is now selected to be connected
to node i with probability r−q

jh . The distance rjh denotes the
shortest distance in the existing network between nodes j and
h , and q is a parameter that controls how close the new con-
nections will remain to the first choice. A schematic description
of the algorithm is shown in Fig. 2A. In Fig. 2 B–D we present
some typical structures resulting from this algorithm for m =2,
as we vary the value of q . The random character of the network
at q =0 starts to break as we increase q , and fewer large-scale
loops remain. For large values of q the new nodes attach only
to neighboring nodes, and the linear character of the network is
preserved, with no long-range loops (Fig. 2D).

This model can describe a number of realistic situations. For
example, new members that are invited into a social network
will most likely connect to the close neighborhood of the mem-
ber who invited them, and in spatially embedded networks, cost
optimization makes shorter links preferable. Similarly, in copur-
chase networks, if 2 items are frequently bought together, there
is a larger probability that a buyer will prefer a new item in
the same category (37), which will remain within the extended
neighborhood of these items. In this way, we assume that new
connections favor to remain close to already existing connec-
tions of the same node (hence, “propinquity”). Even beyond

A B

C D

Fig. 2. The propinquity model. (A) The propinquity model can create net-
works with varying link density at different scales. The network grows
via the successive addition of nodes (green) which link to a randomly
selected existing node (thick line). The green node then selects a new node
with probability r−q, where r is the distance from the previously selected
neighbor. The network topology is controlled by varying the value of the
parameter q. (B–D) Examples of small networks (N = 130) created by vary-
ing the parameter q in the propinquity model. The seed network includes
30 nodes in a line, which are shown in red, and 100 nodes are added, shown
in green, according to the propinquity strategy with m = 2 links. The struc-
tural differences are evident as we increase q from q = 0 (random recursive
network) to larger values, such as q = 8 (where new nodes remain locally
connected and always form a triangle with 2 existing neighbors).

the realms of association as individual choice, biological net-
works result from the gradual accrual of small mutations that
alter functional pathways 1 change at a time. Altering the via-
bility of an organism 1 mutation at a time can similarly be
considered as a propinquity-driven process with the potential to
explain dynamics of conserved complexes (38) and offer founda-
tional frameworks for consideration of such network behaviors
for applications including developmental biology (39) and drug
discovery (40).

The limiting cases q =0 and q =∞ correspond to random
selections over the entire network and strictly neighboring selec-
tions, respectively. As q increases we expect that the model will
result in an increasingly modular structure, since the links remain
local and there are very few links that connect distant parts of
the network. At the same time, the value of q controls the local
density scaling, with direct impact on network topology.

Results
Results of the Model. We have studied 2 main variants of the
model, which differ in the attachment mechanism of the first
connection. In the first variant, a new node selects its first con-
nection randomly, while in the second variant, the selection is
preferential, i.e., proportional to the degree of an existing node.
It is quite straightforward to calculate the degree distribution
for the limiting cases of both variants (SI Appendix). For ran-
dom attachment, the distribution of the degree k goes from
exponential at q =0, P(k)∼ (1+ 1/m)−k , to a power-law dis-
tribution P(k)∼ k−λ with an exponent λ=2m +1; i.e., P(k)∼
k−(2m+1), for large q . For preferential attachment, the degree
distribution remains a power law with an exponent changing
from λ=2m +1 at q =0 to an exponent λ=3 at large values
of q [where the propinquity model becomes similar to a growing
Barabasi–Albert model (12)]. Note that for m =1 the exponent
is λ=3; i.e., the propinquity model generalizes the BA network
generation method. Critically, even though the 2 variants (ran-
dom first selection with q =8 and preferential first selection with
q =0) lead to the exact same degree distribution, they are struc-
turally different. In the first case, we select a random node and
the second selection connects to a neighbor of the first node,
which leads to an effective preferential attachment mechanism
for the second choice, where the network evolves by forming new
triangles leading to a large clustering coefficient. In the second
case, the first node is selected preferentially and the second node
is selected randomly, so that the number of triangles (and there-
fore the clustering coefficient) is practically 0. In this example,
the global link density and the degree distribution are identical,
so the clustering coefficient can be used to separate these 2 cases.
However, the clustering coefficient counts only loops of 3 nodes
and by varying q we can find examples where loops of larger sizes
are favored over triangles, while the clustering coefficient is still
very close to 0. The networks in this case seem statistically simi-
lar under most of the standard network measures, masking their
fundamental differences in local density.

In the current study, we calculate the dependence of ρn and
tn (Eqs. 1 and 2) on the sample size, n , by randomly sampling
different parts of the network and averaging over the samples
(see SI Appendix for details). We studied the possible scaling
of 〈tn〉 vs. n and found that, typically, we recover a power-law
behavior. This power-law form is described by the value of the
exponent, x , in

〈tn〉∼An−x . [3]

This scaling is more prominent for smaller values of n , when
the subgraph size is significantly smaller than the network size,
N . This is since our approach, due to the attractive interac-
tion between successive links, is sensitive to local topologies
where n�N . As we increase n , there is a crossover point after
which 〈tn〉 decays much faster with n , typically as 〈tn〉∼n−1.
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This approximate pattern is true for most cases that we stud-
ied, but the exact behavior of 〈tn〉 can vary, depending on the
structure.

Eq. 3 describes how the density of links changes as we increase
the scale of observation, through the value of the exponent x .
If x is close to 0, this means that the n-tangle density remains
constant at any size, while for larger values of x the density
decays faster, suggesting that larger areas of the network tend
to become more tree-like. The variation of the exponent makes
it also possible to monitor a possible transition of the struc-
ture in a given scale, from a tree to a denser graph, or vice
versa. Note that the magnitude of the density is controlled by
the value of the prefactor, A, independently of the scaling with
the size.

The calculation of the exponent x is straightforward for sim-
ple structures, such as Erdos–Renyi (ER) networks and lattices
(SI Appendix). In ER networks, there is no variation of the den-
sity with n , so that x =0. In lattices, as we discuss in the next
section, the asymptotic value of the exponent is x =1. In gen-
eral, the exponent x can vary between 0 and 1, and therefore the
lattice and the random network are representative of 2 extreme
behaviors of how density can scale with size. Clearly, this means
that we can characterize networks in this way as being closer to,
or farther from, particular structures, such as in the case of lattice
or random networks (28). Note that using the standard definition
of local density ρn in Eq. 1, we always retrieve the trivial behavior
ρn ∼n−1, which does not carry any useful information on local
density.

We used the case of m =2 links per new node. As expected,
when q =0, the connections are all random and we recover the
result for random ER networks, where tn does not change sig-
nificantly with n . As we increase the value of q the density starts
to change systematically with n , following a power-law behavior
(Fig. 3A). This is reflected in the value of the exponent x which
starts at x =0 when q =0 and increases monotonically until it
reaches values close to x ∼ 1 (Fig. 3B).

Interestingly, while the local density changes drastically with q ,
and we can therefore deduce that large structural changes take
place, we would not be able to observe these changes by using
standard network measures, such as clustering and distances. In
Fig. 3C, the clustering coefficient remains almost 0 for values
between q =0 and q ∼ 4, but the local density behavior is drasti-
cally different, as can be seen in the results of Fig. 3A and the
slope calculations in Fig. 3B. Similarly, the network diameter
remains unchanged in the range of q from 0 to 4 (Fig. 3D). In
the same q range, the slope of the density increases from 0 to
0.6. These results show that even though the relative distances
remain constant, the links reorganize themselves in a systematic
way with larger local densities at small subgraphs. The local link
density exponent can therefore be used to characterize changes
in network structures that cannot be predicted by the study of
the clustering coefficient or shortest paths. When q assumes large
values, both the clustering coefficient and the network diameter
increase significantly as a result of highly localized connections
and the removal of practically all network shortcuts. However,
in this range there is very little variation in the local density,
tn (Fig. 3B).

Real Networks. In real systems, when a node creates a new link,
there are obviously many possible mechanisms in action, e.g.,
homophily and collective action (41), consensus dynamics (42),
etc. The propinquity model, however, allows us to isolate the
influence of the neighbor’s proximity to network density. It then
provides a simple model by which to predict the variation of link
density at different scales, even though the use of the typical link
density definition would falsely indicate that the extent of the
propinquity concept (through the parameter q) should have no
influence on the results.

A B

C D

Fig. 3. Results for the propinquity model. Here, the first link of a new node
attaches preferentially to the existing network. (A) Scaling of n-tangle den-
sity as a function of n. From bottom to top, the value of q increases from 0 to
8 in steps of 1. Dashed lines correspond to regular density 〈ρn〉, where there
is no observable effect of q (the slope remains constant). (B) Calculation of
the exponents x for the lines in B, as a function of q. The green circles indi-
cate the corresponding values for the empirical networks analyzed in Fig.
1. (C) Clustering coefficient as a function of q. (D) Even though the expo-
nent x increases with q, the network diameter (as well as the clustering) in
the propinquity model remains constant up to q = 4 and increases only for
larger values of q.

In Fig. 4 we calculate the n-tangle density scaling for the 3
empirical networks analyzed in Fig. 1. Each network leads to
a different slope, x . Using the optimal value for q from Fig. 1
and the exponent x from Fig. 4, we can compare the propin-
quity metrics for these networks. Of course, as mentioned above,
the empirical data cannot be assumed to be fully described by 1
mechanism alone. However, it is clear from Fig. 3B that there is a
consistent trend in both the model and empirical data that larger
local density variations appear at larger q values. This observa-
tion is important because it provides a link between the analysis
of a static network snapshot and the network generation mech-
anism, which is difficult to observe directly. In practice, we have
shown that measurements of the scaling of local link density pro-
vide a systematic way to understand network growth mechanisms
which are based on the distance between 2 nodes, added one
after another as friends.

As a comparison, network properties such as the clustering
coefficient or the network diameter (shown in Fig. 3 C and D)
do not suggest any clear trends with q . However, this may also
be attributed to the small size of these networks, such as the
high school network, which contains only 180 students and is an
unusual, dense network.

Discussion
Our work demonstrates the importance of incorporating mech-
anisms of attachment that allow the tailoring of local network
densities to achieve realistic network structures in generative
growing models. We have studied the simple case where the sec-
ond link depends on the in-network distance and we have shown
that this leads to very different topologies. This finding was con-
firmed by studying the distance between the first 2 neighbors of
new nodes in empirical networks.

We establish a family of network generation models where
the subsequent connections depend on the distance between 2
nodes. To detect the influence of this mechanism on topology we
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Fig. 4. Density scaling of the real networks in Fig. 1. The exponent, x, that
characterizes the density scaling in the empirical networks of Fig. 1 is consis-
tent with the propinquity model exponents q. These exponents (x = 0, 0.16,
and 0.5) are shown in Fig. 3C and follow the same trend, increasing with q,
as the propinquity model in that plot.

study the scaling of local density. If we use the standard defini-
tion of local density, then the scaling is dominated by a trivial
structure. However, we show that a redefinition of local density,
Eq. 2, provides a direct way of studying this scaling and the local
density can probe the structure at different scales.

From a theoretical point of view, the power-law behavior in
Eq. 3 can also be seen as the definition of an additional frac-
tal dimension for complex networks, albeit within the range
from x =0 to x =1. The traditional definition of a fractal
object detects how the mass scales with distance. In complex
networks, this definition becomes problematic because of the
natural restriction of distances in usually just 1 decade. For exam-
ple, the maximum distance in the 3 empirical networks used in

Fig. 1 ranges from 4 to 19, which does not allow a reliable eval-
uation of network dimensions (see also related discussion in SI
Appendix). There are many methods in the literature that have
introduced possible modifications on how fractal features can be
measured in networks (43, 44), but even then there are many
nonfractal networks (e.g., ER networks) whose structural differ-
ences cannot be captured by fractal dimension. As an alternative
to these methods, the present link density method can provide
a natural interpretation of the self-similar properties of a net-
work. In this definition, the important quantity is the “mass” of
the links instead of the number of nodes (12), while the “length”
corresponds to the number of nodes, instead of a distance met-
ric. Self-similarity in this study shows how the fraction of the
excessive links scales with the number of nodes. A small expo-
nent means that any part of the network will have similar link
density, independently of the sampled size, but a large exponent
shows that larger samples of the network become sparser. The
rate at which the density decreases is then determined by this
fractal exponent x .

In conclusion, the propinquity model provides another class
of generative models, rooted in features of real networks, and
is leading us to understanding how individuals become inte-
grated into communities at different scales. It enables us to
test meaningful hypotheses about which scales of social inter-
actions are important in an evolving network as a metric for
isolated analysis and comparison between systems. Most impor-
tantly, it allows us to make behaviorally driven predictions about
the emergent structure of networks based on single snapshot
observations.
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29. T. F. Coleman, J. J. Moré, Estimation of sparse Jacobian matrices and graph coloring
blems. SIAM J. Numer. Anal. 20, 187–209 (1983).

30. P. J. Laurienti, K. E. Joyce, Q. K. Telesford, J. H. Burdette, S. Hayasaka, Universal frac-
tal scaling of self-organized networks. Phys. A Stat. Mech. Appl. 390, 3608–3613
(2011).
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Empirical networks

The study of second links in real networks requires knowledge
of their complete time evolution. There are very few available
datasets in the literature which fulfill this requirement. The
three networks that we used in this work are as follows:

- UC Irvine. We downloaded this dataset from http:
//toreopsahl.com/datasets/#online_social_network . This network
has been studied in detail in Ref. (17). The dataset describes
interactions, in the form of online messages in a Facebook-like
setting, between students at the University of California, Ir-
vive. These messages are timestamped and so we were able to
reconstruct the order by which this network was built. The
network includes 1893 nodes and 13835 links.

- High School. This dataset was down-
loaded from http://www.sociopatterns.org/datasets/
high-school-dynamic-contact-networks and contains the
temporal evolution of contacts between students in a High
School in Marseilles, France, over a 5 day period in November
2012 (18). The network includes 180 nodes and 8145 links.

- Facebook wall. This dataset was downloaded from http:
//socialnetworks.mpi-sws.org/data-wosn2009.html . The data
contain the evolution of the link structure in the Facebook New
Orleans networks (19). The links represent communication
through the wall feature of Facebook. The network includes
43953 nodes and 182384 links.

The problem with density measurements

The basic quantity that we study in this work is the link
density. We are mainly interested in determining the behavior
of local link density, and how this varies at different scales
within the network. The scale is determined by the number of
nodes, n, in a connected subgraph of the network (which itself
frequently represents a subsampled graph of a larger network).
Formally, the link density ρ in a graph with N nodes and L
links is defined as the fraction of the number of links over
the maximum possible number of links, i.e. ρ=L/[N (N -1)/2].
To measure the local link density we consider an induced
connected subgraph of n nodes, where we take into account all
the en existing links between all pairs of nodes in the subgraph
[this subgraph closely resembles the outcome of typical BFS
sampling methods]. We then define the local link density as

ρn = en

n(n−1)
2

. [1]

How does the density scale with the number of nodes? The
answer should be particularly simple in, e.g., ER networks,
where we know that the structure is homogeneous and there

Fig. S1. The problem with link density across networks and within a network.
(a) When we construct ER networks of different size, N , with the same link density, ρ,
(here ρ=3 10-2), then the observed link density trivially remains constant independently
of the network size N , as expected. The same is trivially true for scale-free networks,
or any other model structures where the global network density is fixed by the model
parameters. Notice that it is not possible to construct a connected network with
size smaller than 1/ρ (so here, N>33). (b) In contrast, the link density in connected
subgraphs of size n, within a network of sizeN , decays inversely linearly with n when
the subgraphs are sampled from a larger network, before reaching its asymptotic
value. In the plot, we sample subgraphs from an ER network of N=105 nodes, where
the global link density of the network is also equal to ρ=3 10-2.

are diminishing fluctuations of the density in any part of the
network. The subgraph size should not influence the density
measurement, and any subgraph should yield similar link
density. To measure such a quantity there are traditionally
two approaches which are considered fully equivalent to each
other. First, we can create ER networks of different size N and
measure how the density scales with N. As shown in Fig. S1a,
this is a trivial computation where ρ is constant, independently
of the size N. The second approach is to consider a large
network of N nodes and randomly sample smaller connected
subgraphs of n nodes, and proceed by varying n. In this
case, however, the density is no longer constant, but decays
roughly as n-1 (Fig. S1b), before reaching its asymptotic
expected value as in Fig. S1a. This means that if we did not
know anything about this network and we were only sampling
small parts of it, we would not be able to deduce that these
subgraphs were parts of an ER network.

This behavior is due to the fact that choosing randomly
n nodes from an N -nodes graph (n<<N ) yields subgraphs
that are below the percolation threshold, and therefore the
number of links in such a subgraph should be less than n,
i.e. the subgraph cannot be connected. Thus, the sampling
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process applied here is biased, i.e., it always provides con-
nected subgraphs, which means that significant correlations
are introduced. If we were sampling a real network, we would
not be able to know in advance the minimum sampling size
required for the given density, since the global density remains
unknown unless we can have access to the entire network.
The scaling of the subgraph density with the size would then
mislead us to conclude that we were sampling a non-random
network, where density is not constant at different scales.

The simple solution that we suggest here is to subtract
these n-1 links in the tree structure that introduce artificial
correlations. The snowball sampling method and the definition
of the connected subgraph require all the subgraphs to have
at least n-1 links for connectivity. As mentioned above, in real
networks the density has been shown to scale inverse linearly
with the network size, i.e. ρn ∼ n−1+O(n−2). This means that
en ∼ n+O(1+n−1) and the linear term dominates the behavior
of en. If we simply subtract these links from en, the density
behavior will now depend on the higher-order terms, which
may scale in a different way than ρn. We therefore apply here
the recently defined metric for the local n-tangle (Topological
Analysis of Network subGraph Link/Edge) density, tn, as

tn = en − (n− 1)
n(n−1)

2 − (n− 1)
[2]

The key feature in this definition is the removal of the n-1
links that are necessarily present in an induced subgraph to
ensure connectivity. We also remove the same number of links
in the denominator, so that tn remains properly normalized
and ranges from tn=0 in the case of a loopless tree subgraph
to tn=1 for a fully connected subgraph.

In the current study, we calculate the dependence of ρn

and tn on the sample size, n, by randomly sampling different
parts of the network and averaging over the samples. In
practice, we start by fixing the number of nodes n. We select
a random node and add it to the subgraph. We then create
a list that includes all the links of this node and randomly
select one of these links. The node at the other end of the
link is added to the subgraph and its links are added to the
candidate list. We repeat this process until the subgraph
includes n nodes. Finally, we add all the links between the
subgraph nodes that appear in the original network, creating
thus the induced subgraph. We calculate the number of links
en in this subgraph and convert it to ρn and tn according to
equations [1] and [2]. We repeat this procedure and build the
corresponding distributions, which finally yield the average
values 〈ρn〉 and 〈tn〉. We can then change the value of n and
generate subgraphs of different size.

We studied the possible scaling of 〈tn〉 vs n and found that,
typically, we recover a power-law behavior. This power law
form is described by the value of the exponent, x, in

〈tn〉 ∼ An−x. [3]

This scaling is more prominent for smaller values of n, when
the subgraph size is significantly smaller than the network size,
N. As we increase n, there is a crossover point after which
〈tn〉 decays much faster with n, typically as 〈tn〉~n-1. This
approximate pattern is true for most cases that we studied,
but the exact behavior of 〈tn〉 can vary depending on the
structure.

Equation [3] describes how the density of links changes as
we increase the scale of observation, through the value of the
exponent x. If x is close to 0, this means that the n-tangle
density remains constant at any size, while for larger values
of x the density decays faster suggesting that larger areas of
the network tend to become more tree-like. The variation
of the exponent makes it also possible to monitor a possible
transition of the structure in a given scale, from a tree to
a denser graph, or vice versa. Notice that the magnitude
of the density is controlled by the value of the prefactor, A,
independently of the scaling with the size.

The calculation of the exponent x is straightforward for
simple structures, such as ER networks and lattices. In ER
networks, there is no variation of the density with n, so that
x=0. In lattices, as we discuss in the next section, the asymp-
totic value of the exponent is x=1. In general, the exponent x
can vary between 0 and 1, and therefore the lattice and the
random network are representative of two extreme behaviors
of how density can scale with size. Clearly, this means that
we can characterize networks in this way as being closer to,
or further from, particular structures, such as in the case of
lattice or random networks.

Calculation of subgraph density in Erdos-Renyi net-
works

We consider n-nodes in an induced connected subgraph of a
larger Erdos-Renyi network. We denote the probability for any
link to exist in this network as p. The total number of possible
links in the subgraph is n(n-1)/2. Since the subnetwork is
connected, there are already at least n-1 links in the subgraph.
Each of the remaining n(n-1)/2-(n-1) possible links appears
with probability p. As a result, the total number of links in
the subgraph, en, is the sum of these two quantities, i.e.

en = (n− 1) + p

(
n(n− 1)

2 − (n− 1)
)
. [4]

Using the definitions in Eqs. (1) and (2) of the main text,
it is easy to show that Eq. [4] yields the following results:

〈tn〉 = p , 〈ρn〉 = p+ 2(1− p)
n

. [5]

The key idea in this calculation is that the definition of a
connected subgraph already imposes the existence of n-1 links.

Density measurements in model and real networks.

We first study the behavior of density in simple model network
structures, where we already have an intuition for how links
are organized. In Fig. S2a we show the dependence of both the
regular and the n-tangle density, as a function of the subgraph
size n, for ER networks of varying global densities. It is clear
that in all ER networks there is almost no change of the tn
density for any value of n, i.e. the exponent x=0, independent
of the network density. The value of tn is trivially equal to the
average density of the global network. As noticed above, the
regular definition of density leads to a power-law decay with
exponent x=1, instead, and constant density is recovered only
asymptotically. The exact calculation of these densities in ER
networks (Eq. [5]) shows that these two quantities behave
differently, but this difference is not a universal feature. For
example, in regular square lattices (Fig. S2b) the behavior
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of both measures is the same, and they both scale as n-1.
It is quite simple to explain why this happens: a subgraph
of n nodes in a lattice includes 2n links out of a maximum
possible of n2, yielding a dependence of 1/n. Except for
very small values of n, when we subtract the n-1 links we
only modify the prefactor of the ratio, but not the scaling.
This also corresponds to our intuition that larger lattices are
more diluted since the number of links increases linearly with
the number of nodes, but the number of possible links is
proportional to the square of this number, so that the density
vanishes asymptotically with increasing size.

In scale-free networks (Fig. S2c) we find that the n-tangle
density 〈tn〉 remains roughly constant for small values of n, and
asymptotically it decays inversely linearly with n. The constant
value is significantly higher than the global density, which here
was 3 10-6, indicating that there is a larger concentration of
links in smaller regions, at least when the degree exponent
γ is smaller than 3.0. This is a result of the inhomogeneous
character of the scale-free structure, as can be understood by
the presence of hubs with higher probability and the increased
number of links around them. In other words, a sampling
process that discovers new nodes by following links, tends to
over-estimate the presence of hubs because they are selected
more often. The regular density 〈ρn〉, however, scales as a
power-law for the entire range of n. A comparison of the
scale-free results with the ER results demonstrates that 〈ρn〉
cannot separate the two cases, since they both decay in a
similar way. The n-tangle density, 〈tn〉, on the other hand,
does not change in ER networks, but for scale-free networks it
is larger in small scales compared to its value at larger scales.

For larger values of the degree exponent γ>3, the n-tangle
density is significantly smaller than the global network density,
because the hubs are much weaker and the structure is much
closer to a tree topology. In this case, there are very few
excessive links and Eq. (2) indicates that 〈tn〉 can only have
small values, which vanish for a tree structure.

We finally studied a model of explicit modularity. We cre-
ated networks of largely isolated modules of M nodes each,
where a node in the module had 0.99 probability of creating
connections within the module and 0.01 between modules.
The density 〈tn〉 describes this structure very accurately, re-
maining constant until n is equal to the number of nodes, M,
in the module. After that, the behavior changed abruptly
towards a power-law decay, until n=N where the n-tangle
density becomes equal to the global density used here, ρ=4
10-4. Therefore, a change in the behavior of density at different
scales can also be used as a detection method for modularity
and for estimating typical module sizes. The link density 〈ρn〉
exhibits a transition at the same point, but it cannot capture
the constant density within a module, similar to the case of
ER networks.

We also calculated the local density dependence on n for a
number of real networks. These include: i) the Internet at the
AS level (Caida project) in four different years, ii) the Amazon
co-purchase network at three different dates, iii) the Gnutella
sharing network, and iv) the Facebook friendship network of
US Universities in 2005.

These real networks present a range of different behaviors.
For example, the scaling of the n-tangle density in the AS
Internet (Fig. S3a) behaves similarly to that of a modular
structure, with a roughly constant density up to n~1000 and

Fig. S2. Variation of the average n-tangle density 〈tn〉 (continuous lines) and
the average link density 〈ρn〉 (dashed lines), as a function of n, for typical
network structures. The black lines are used as a guide to the eye for a slope
equal to -1. (a) Results for ER networks of size N = 105 and link densities (top to
bottom):3x10-2, 10-3, 3x10-3, and 10-4. (b) Results for two- and three-dimensional
lattices. (c) Results for scale-free networks, created with the configuration model, with
a degree exponent (top to bottom): γ=2.5, 2.75, 3.0, and 3.5. The network sizes are
N=106 and the global density is ρ ~3 10-6. (d) Results for the modular model, for
networks of N=105 nodes and modules with (top to bottom): M =250, 1000, and
10000 nodes. Notice that the n-tangle density remains constant until we reach the
size of the module. The behavior then changes and 〈tn〉 decays almost inversely
linearly. The crossover value in each line can be used to estimate the typical size of
the modules in the structure.

an inversely linear decay at larger sizes. We studied four
different structures, separated by one year between 2004 and
2007, and there was very little variation in the density scaling,
even though the structure itself has changed over this time
period. The 〈ρn〉 density presents a small transition range,
which indicates that the absolute value of the density changes
abruptly, but retains the same scaling behavior for the whole
range of n.

Surprisingly, all Amazon co-purchase networks (Fig. S3b)
have density features similar to that of spatial networks, such
as the square lattices of Fig. S2b. These networks are still
scale-free with a broad degree distribution, so spatial embed-
ding in low dimensions is not evident. Even though certain
classes of scale-free networks have been shown to be spatially
embeddable under certain circumstances, the majority of com-
plex networks are difficult to embed and a high degree of
organization is required for a network to have features similar
with a low-dimension structure. It is puzzling, then, that in
a network of this size (N ∼ 400, 000) with a broad degree
distribution, the density would scale similarly with a lattice
structure. This scaling indicates a well-organized configuration
of links, as we vary the size of a subgraph. This regularity
can be explained by the nature of the connections. In the
co-purchase network, two products, e.g. two books, are con-
nected when they are frequently bought together. This leads
to a significantly modular network, where books are highly
connected within their own category, e.g. fiction books, tech-
nical books, etc, and much less across categories. This reflects
the purchase habits of consumers, who tend to be interested
in items of just a few categories rather than buying items with
a uniform probability from among all categories. Our results
indicate that there is a large degree of order at all scales in
the structure, and links tend to remain local (like in a lattice),

Gallos et al. S3



Fig. S3. Density scaling in real networks. (a) AS Internet connectivity at four
different dates, from 2004 to 2007, (b) Amazon co-purchase network at four different
dates, (c) Gnutella sharing network at four different dates, and (d) Facebook friendship
networks in 5 US Universities in 2005. Solid lines represent 〈tn〉, and dashed lines
represent 〈ρn〉.

with very few long-range shortcuts. This is in analogy with
spatial link arrangements, where larger subgraphs become
significantly more diluted and most links remain local.

The Gnutella p2p networks (Fig. S3c) exhibit a behavior
reminiscent of the random scale-free networks in Fig. S2c.
At small values of n, we recover either a constant value of
〈tn〉 or a small decay, i.e. x~0.2. Asymptotically, this decay
becomes faster and the local density reaches much lower values.
This variation of the decay can be attributed to the strongly
inhomogeneous character of the structure, similarly with the
case of the scale-free networks. The hubs lead to an increased
local density, but the average density of the network as a whole
is significantly lower.

Finally, in Facebook friendship networks (Fig. S3d), the
networks that we studied show a decay with the subgraph size
n, with moderate exponents in the range x=0.3-0.5. When
we randomly rewired the connections among nodes in these
networks, keeping the degree of all nodes intact, we found that
the density remains constant with n and all exponents are very
close to x=0, as we would expect from a random un-organized
network.

Calculation of the degree distributions in the propin-
quity model

We studied two variations of the propinquity model. In the first
case, a node attaches randomly to an existing node and then
uses the propinquity principle to find its second connection.
In the second case, the new node selects its first connection
preferentially, i.e. with a probability that depends linearly on
the existing degree of each node. Using the standard technique
of rate equations we can easily calculate the degree distribution
for the extreme cases of q = 0 and q →∞. In the following, we
assume a growing network which starts at time t = 0 without
any nodes. Let N(k, t) be the number of degree k nodes at
time t and N(t) the total number of nodes in the network. At
every time step, a new node is added to the network, so that
N(t) = t. Every new node connects tom existing nodes, where
the first node is selected either randomly or preferentially and
the remaining m − 1 nodes are selected depending on their

distance from the first node, according to the propinquity
model. The probability that a node has degree k at time t is
then: pk(t) = N(k, t)/N(t).

a) Random selection of the initial node and q=0. This model
corresponds to a new node which connects to m random nodes
in the network. The probability to select a node is independent
of the degree or the network distance and it is equal to 1/t.
The number of links that connect to nodes of degree k at time
step t, is equal to this probability multiplied by the number
of nodes with degree k, Npk(t) and the number of links, m:

1
t
Npk (t)m = mpk (t)

The master equation for the system then becomes:

(N + 1)pk(t+ 1) = Npk(t) +mpk−1(t)−mpk(t), k > m
(N + 1)pm(t+ 1) = Npm(t) + 1−mpm(t), k = m
pk(t) = 0, 0 ≤ k ≤ m− 1

The left part of the equation counts the number of nodes
with degree k at time t+1. This number is equal to the number
of nodes with degree k at time t (first term) plus the number
of nodes whose degree increases from k− 1 to k (second term)
minus the number of nodes whose degree increases from k to
k + 1 (third term).

For t→∞, the stationary state is pk(t+ 1) = pk(t), and
the equations above become:

pm = 1
1+m

pk =
(

m+1
m

)m 1
m+1

(
m+1

m

)−k
, k > m

This confirms the well-known exponential decay with k in
random recursive networks, where e.g. for m=1 we have pk =
2−k and for m=2 the distribution becomes pk = (3/4)1.5−k.

b) Preferential selection of the initial node and q=0. Here we
select the first node with probability proportional to its degree,
and the remaining m − 1 nodes are selected randomly. The
number of links that point to nodes with degree k are then:

k

2mt + m− 1
t

since every node has 2m links. The number of new links that
connect to degree k nodes becomes:(

m− 1
t

+ k

2mt

)
Npk (t) =

(
m− 1 + k

2m

)
pk (t) .

With similar arguments as above, the master equation is
then:

(N + 1)pk(t+ 1) =
Npk(t) + (m− 1 + k−1

2m
)pk−1(t)− (m− 1 + k

2m
)pk(t) k > m

(N + 1) pm (t+ 1) =
Npm (t) + 1−

(
m− 1 + m

2m

)
pm (t) k = m

pk(t) = 0 0 ≤ k ≤ m− 1.

The solution of the stationary state gives:

pm = 2
(2m+1)

pk = 2
2m+1

A(A+1)...(A+2m)
(A+k−m)(A+k−m+1)...(A+k+m) , k > m
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Fig. S4. Degree distributions for the propinquity model. The symbols represent
simulations of growing networks and the lines correspond to the exact solutions.
Notice that an initial random selection with q = 8 gives the exact same distribution as
an initial preferential selection with q = 0.

where A = m(2m − 1). Asymptotically, this distribution
assumes the power-law form of k−(2m+1), i.e. it decays much
faster as we increase m. The dependence of the exponent on
m shows that despite the preferential attachment rule for the
first link, the network quickly behaves similar to a random
structure. For m=2, for example, we get

pk = 12096
(4 + k) (5 + k) (6 + k)(7 + k)(8 + k) , k > 2

which behaves as k-5.

c) Random selection of the initial node and q → ∞. For very
large values of q, them−1 connections after the initial selection
almost certainly point to a neighbor of the first selected node.
The probability to select such a node then is proportional to
its degree, since this is equivalent to following the links of the
first node. This probability can be written as

1
t

+ k(m− 1)
2mt

and the number of new links that connect to degree k nodes
becomes:(

1
t

+ k (m− 1)
2mt

)
Npk (t) =

(
1 + k (m− 1)

2m

)
pk (t) .

With similar arguments as above, the master equation is
then:

(N + 1) pk (t+ 1) = Npk (t) +
(
1 + (k−1)(m−1)

2m

)
pk−1 (t)−(

1 + k(m−1)
2m

)
pk (t), for k > m

(N + 1) pm (t+ 1) = Npm (t) + 1 −
(
1 + m(m−1)

2m

)
pm (t),

for k = m
pk(t) = 0, for0 ≤ k ≤ m− 1.
The solution of the stationary state for m=2 has the same

form as case (b) above, i.e. when one link connects through
preferential attachment and one is selected randomly which
gives a degree distribution k−5. We can see therefore that
the distribution changes from exponential at q = 0 to a weak
power-law at large values of q.
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Fig. S5. Fractal behavior of the propinquity model. The left panel shows the
dependence of the minimum number of boxes Nbox on the maximum distance within
the box, rbox for the three networks shown in the legend. The right panel shows the
same dependence for different q values of the propinquity model (q values are shown
in the box) for networks of size N = 105.

d) Preferential selection of the initial node and q → ∞. This
case is the same as selecting m nodes preferentially, i.e. the
standard Barabasi-Albert model. The known result is:

pk = 2m(m+ 1)
k(k + 1)(k + 2)

which asymptotically is a power-law k−3 with exponent 3.
The effect of increasing q leads to a broader tail in the degree
distribution, and signifies the changes in local density that
take place as we change the preferential distance of the m-1
links, following the initial attachment.

The degree distributions for these cases are shown in Fig.
S4 for m = 2.

Fractal dimension in the propinquity model

The concept of fractal dimension provides an efficient method
for studying network structure. Typically, a network is par-
titioned into the smallest possible number of boxes, Nbox so
that within a box the maximum distance is less than rbox. By
varying the distance rbox, we can determine if the structure
has fractal features, through the exponent, db, of a possible
power-law decay: Nbox ∼ r−db

box . If this relation decays faster
than a power-law, or equivalently for finite networks if the
exponent has a large value, then the network is not fractal.

In Fig. S5 we calculated the fractal behavior of the three
empirical networks shown in Fig. 1 and we found that their
structure is largely non-fractal. For example, the UC Irvine
network has an approximate slope of db ∼ 6 while the Face-
book network does not exhibit a power law behavior at any
significant range of rbox.

In the case of the propinquity model, network distances
remain in general small, especially for small values of q. This
leads to a fast logarithmic drop in the number of boxes for
larger values of rbox which is an indication of non-fractal be-
havior. At larger q values there is a more prominent power-law
behavior, which has a fractal dimension db ∼ 3 and does not
depend strongly on q. As a result, the fractal dimension cannot
be used to distinguish networks created by the propinquity
model with different q values.
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