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Abstract. In this work, we study via computer simulations the spatial prisoner’s dilemma (PD)
game for the general case where the distribution of the connections between the individuals playing
the game obeys a power law. This distribution has been shown to describe many aspects of social
acquaintances, while the PD game is a powerful tool for studying mutual trust and cooperation
among individuals. We study this model under different conditions, such as varying degree of
connectivity and payoff value. Depending on the exact conditions of the game, we observe a plethora
of behaviors for the percentage of cooperating agents. For example, the same network may settle in
an equilibrium configuration of either low or high percentage of cooperators, or induce a transition
between these two regimes.

The Prisoner’s Dilemma (PD) game [1] has attracted a lot of interest during the
recent years. It is a very simple, yet powerful, game used mainly for social studies.
It can describe the conflict in the behavior of a person between cooperative and selfish
attitudes. The selfish behavior is manifested by a defecting strategy, where the individual
tries to obtain the greatest possible benefit from interactions with other individuals.
Cooperation, on the other side, leads to a smaller personal benefit but to a greater average
benefit for all the community.

In its simplest form, PD is a zero-dimensional game where two players can choose
between two strategies, i.e. to either cooperate (C) or defect (D), without knowing the
strategy chosen by the other player. The payoff for each player depends on the joined
responses. If both players cooperate, they each gain a reward of 1. If they both defect,
they are both punished, and earn 0. If one chooses to defect while the other cooperates,
the defector receives the temptation gainb (whereb > 1), while the cooperator is left
with the sucker payoff (i.e. 0). It is important to notice that an individual cares about
maximizing his own payoff, rather than gaining more than his opponent, in which case
he would always defect.

An important extension of the game is the spatial prisoner’s dilemma [2], where a
large number of players is placed on a lattice structure. During a game round each
individual plays the game with his neighbors. The total payoff from all these interactions
is summed up and computed during each turn for all players. All individuals exhibit an
imitation behavior of following the most successful strategy accessible to them. For the
next round, thus, each player adopts the strategy of his neighbor that received the largest
total payoff (including himself).

The spatial version of the game answers questions related to the conditions under
which cooperation can be stable. Since there is no memory for the encounters between
players, the cooperation is due to their spatial organization. A number of papers ad-
dresses the influence of the underlying topology. Thus, Kim et al [3] studied the spatial
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FIGURE 1. Distribution of the percentageρC of cooperators for varying temptation valuesb, in
networks with (a)γ = 3.5, (b)γ = 3.0, and (c)γ = 2.5

PD game on small-world networks, while Holme et al [4] played the same game on a
number of empirical scale-free networks. In Ref. [4] the authors used a probability for
irrational behavior in order to drive the system, where an individual choses not to follow
the winning strategy with a probabilitypm. In this work we show that, in general, the
probabilitypm is not necessary for observing interesting behavior in scale-free networks.

A scale-free network consists ofN nodes andL links between them. A node i has
ki links, where the distribution of the connectivity for all nodes follows a power law:
P(k) ∼ k−γ . Thus, players are placed on the network nodes and play the PD game with
their neighbors (players located on nodes that are connected with a direct link). In this
way, a small number of players are placed on hubs (i.e. the most connected nodes)
and interact with a large number of other agents, while most agents in the system are
located on low-connectivity nodes. We monitor the fractionρC of players that choose to
cooperate during one round. This value asymptotically stabilizes to a constant value for
a given realization.

It is known [2] that when starting with a random initial distribution of cooperators
and defectors the spatial PD game on lattices always leads to a constant asymptotic
percentage of cooperators for a fixedb value. For example, considering 8 neighbors
interaction yieldsρC = 1 for 1< b < 1.8 andρC = 0.318 for 1.8 < b < 2. On scale-free
networks we have observed in our simulations a very different behavior. The percentage
ρC may vary significantly for networks of the sameγ exponent and temptation value
b. Moreover, even playing the game on the exact same network with different initial
random distribution of C and D can lead to differentρC values. It is natural, thus, to
study the distributions of the asymptoticρC values, in addition to the average〈ρC〉 value.

In Fig. 1a we can see that the distributions ofρC for γ = 3.5 have a roughly gaussian
shape. Their width is roughly constant as we varyb with a range of the values of around
10%. As we increase the temptation valueb, the distributions move towards smaller
cooperator densities. Forγ = 3.0 (Fig. 1b) there are again some predominant peaks for
low b values, but now there is a number of peaks with much lower height, denoting
the presence of some low-cooperation configurations. Whenb = 2.0 the distribution
becomes bi-modal with two main peaks. For the ‘denser’ networks ofγ = 2.5 the picture
is quite different. For allb values the distributions are bi-modal, with a peak at large
ρC values and a peak at almost zero cooperator density. Variation ofb is not inducing
important changes, except forb = 2, when the right wing of the distribution moves to
lower values.
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FIGURE 2. Average percentage of cooperators〈ρC〉 as a function ofb, for networks of varying
connectivity (the exponentγ is shown on the plot).

In Fig. 2 we plot〈ρC〉 as a function ofb for networks with different exponentsγ. At
γ = 2.25 more than 90% of the population opts to cooperate. This emergent cooperation
implies a ‘globalization’ of the prevailing attitude, where spreading over the entire
network is very efficient. As we increaseγ, the cooperation density decreases, with
an average percentage of〈ρC〉 = 0.2 at γ = 3.5. This shows that the game outcome
has become more ‘local’. At largeγ values there are not nodes with a large number of
connections, and a defector cannot influence many neighbors, or be influenced by them.
This leads to the survival of many clusters with defecting attitude.

In short, we have seen that the density of cooperators on a scale-free network cannot
be characterized by a single value. We have studied the distributions ofρC and we found
that, depending on theγ and b values, it is possible to have uni-modal or bi-modal
distributions. The average〈ρC〉 density does not greatly vary withb, but increasing the
exponentγ causes〈ρC〉 to decrease significantly.
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