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ABSTRACT
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networks because they represent two�connected subnetworks of minimal size� To cost�e�ectively utilize cycles�
we must determine the minimum capacity required for the links in the cycle� subject to constraints on how
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c must be routed and how capacity must be utilized� Depending upon the situation being modeled�
di�erent versions of the problem arise� The least restrictive versions are solvable in polynomial time� while
the more restrictive and more realistic� versions are NP�hard� This paper focuses on variants of the problem
in which time�slot assignment constraints are enforced to model the operation of the equipment placed at
the nodes of a SONET ring� We present several simple heuristic methods for addressing the problem� and
we show that they are ��approximation algorithms�



Demand Routing and Slotting on Ring Networks

Tamra Carpenter, Steven Cosares, and Iraj Saniee

Abstract: We describe an important class of problems that arise in the economic design of “survivable”
networks.  Such networks are capable of accommodating all of the traffic between pairs of locations, even if
some arbitrary link or node in the network is rendered unusable. Cycles play an important role in the design
of survivable networks because they represent two-connected subnetworks of minimal size. To cost-
effectively utilize cycles, we must determine the minimum capacity required for the links in the cycle,
subject to constraints on how traffic must be routed and how capacity must be utilized.  Depending upon the
situation being modeled, different versions of the problem arise. The least restrictive versions are solvable
in polynomial time, while the more restrictive (and more realistic) versions are NP-Hard.  This paper
focuses on variants of the problem in which time-slot assignment constraints are enforced to model the
operation of the equipment placed at the nodes of a SONET ring.  We present several simple heuristic
methods for addressing the problem, and we show that they are 2-approximation algorithms.

1. Introduction

Today's fiber optic networks are able to concentrate large volumes of traffic onto a relatively

small number of nodes and links.  As a result, the failure of a single network element can

potentially interrupt a large amount of traffic.  For this reason, ensuring survivability through

fault-tolerant network design is an important network design objective.

In a "survivable" network, the links have sufficient capacity and are inter-connected in such a

way that much of the expected network demand is guaranteed to be satisfied, even if some

arbitrary link or node in the network is rendered unusable.  For telecommunications applications,

survivable designs are essential because many service providers wish to guarantee their ability to

establish and maintain connections in a timely manner, even during network component failures.

Although implementing such features may be expensive, it is thought to be a cost effective

alternative to relying on a network that has a high potential for service disruption [NYT].

Service providers that do not offer guarantees that their networks are protected from unforeseen

circumstances are likely to lose clients to competitors who do.

In the next section, we provide a brief overview of popular methods for protecting network

traffic.  These methods include protecting demands on rings that join a group of nodes in order

that they may share protection capacity.  To do this in the most cost-effective manner, the

demands must be packed onto a ring with the smallest possible capacity.  Our paper focuses on

the resulting ring sizing problem.  Ring sizing issues have recently been considered by several
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authors ([CS94], [SSW95], [VSKW95]), but without the so-called “slotting” constraints that we

consider here (and discussed in [CCS94]).  These constraints better-model the way that most

current equipment utilize ring capacity to satisfy demands.  In this paper, we formulate the

Demand Routing and Slotting Problem [DRSP] that includes these constraints, and we discuss a

variety of heuristic methods that provide feasible solutions with good quality guarantees.  The

heuristics that we consider are “two-phased” methods that first determine demand routing and

then assign demands to slots.  By breaking up the problem in this fashion, we can exploit

algorithms previously derived for the individual components.  The main contributions of this

paper are to: 1) introduce the Demand Routing and Slotting Problem; 2) to present several

heuristic methods for obtaining solutions for DRSP; and 3) to demonstrate quality guarantees for

these heuristics.

In the next section, we begin our discussion of DRSP by describing the network planning context

in which it arises.  In section 3, we formally state DRSP and discuss its complexity.  We note that

less restrictive variants of DRSP can be solved in polynomial time while the more restrictive

variants, representing equipment presently in use, are NP-hard.  In Sections 4 and 5 we discuss

the routing and slotting components of DRSP.  In Section 4 we present a basic slotting algorithm

that was proposed by Tucker [Tuck75].  In Section 5, we present several methods for

determining the routing of demands in a ring network.  By combining these algorithms with the

slotting algorithm of the previous section, we demonstrate that a number of simple techniques

assure DRSP solutions that use no more than twice the optimal number of slots and in many

cases are within a potentially tighter bound based on the linear relaxation.  The last section

concludes with discussions about future issues related to DRSP.

2. Designing Survivable Networks

In this section, we briefly introduce some common mechanisms for survivability planning.  Our

primary objective is to provide the reader with the general context in which the Demand Routing

and Slotting Problem arises.

There are a few basic approaches to providing survivability in a network design that differ in the

degree to which protection capacity is dedicated to protect particular demands.  One method is to

fully dedicate protection capacity for each specific demand.  In this framework, two individual

and non-intersecting routes are reserved for every point-to-point demand requiring protection.
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The links in either route have enough capacity to satisfy the demand.  The "back-up" path is not

utilized unless a link or node in the "primary" path is disconnected.  This method is popular

because it is easy to implement, it requires fairly inexpensive node equipment, and it provides

virtually immediate failure recovery.  However, the resulting network has a large amount of

under-utilized capacity, so this approach is best when the number of  point-to-point demands

requiring protection is small or when network capacity is cheap.

In an alternative approach, the back-up capacity is not dedicated to any particular demands,

rather it is shared by all of them.  Extra link capacity is placed throughout the network and

special switching equipment is placed at key nodes so that, within seconds, traffic may be

redirected to avoid a broken or congested link or node location.  The equipment necessary to

implement this approach is more sophisticated and expensive, but the associated network designs

are not only survivable, but are also robust to "demand uncertainty".  That is, the network can

satisfy the demand for connections that were not originally anticipated in demand forecasts.  For

some network services, this feature is as important as survivability because of the difficulty in

obtaining reliable forecasts. The problems of determining appropriate link capacities and finding

optimal locations for the switching equipment to implement this approach are among the most

challenging of  those encountered by the authors.  (See [San94] [BCM94] [SDC94] for

examples.)

In a third approach, the demand locations are partitioned into sets called "communities" and

protection capacity is dedicated to each community.  That is, the demands within  each

community share protection capacity allocated to the community as a whole.  A community

would likely be a set of nodes that are highly inter-connected and have a relatively large number

of point-to-point demands among them.  A typical community would contain between 3 and 16

nodes.  Once an appropriate community is established, protection can be assured by finding a

simple cycle or "ring" that connects the nodes of the community and then placing enough

capacity to satisfy and protect the demands within the community.  Topologically, a ring is a

simple cycle passing through each node of the community. An example is given in Figure 1.

Rings offer survivability because every pair of nodes on the ring has exactly two routes between

them so that the network remains connected if there is a failure.  Whenever a broken link or node

is detected, the equipment on the ring redirects traffic to avoid the failure.
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Figure 1: 6 node ring

An important technology in fiber-optic networks, called "the Synchronous Optical NETwork" or

"SONET", gives rise to special equipment that are capable of effectively performing the

switching tasks required for these types of protection in less than one tenth of a second.  In

[CDSW95] the authors describe the SONET Toolkit, which is a decision support system for

providing survivability in SONET networks that was developed at Bellcore.  The system includes

various mechanisms for providing survivability, but it relies heavily on ring deployment for cost-

effectiveness.  The ring sizing problem is one particular subproblem that arises in the ring

selection and deployment component of this tool.

3. Notation and Problem Formulations

The variant of ring sizing that we consider is special multi-commodity flow problem that we call

the "Demand Routing and Slotting Problem" [DRSP].  We now describe DRSP in detail.  Our

task is to allocate capacity to serve the individual demands assigned to a ring with the ultimate

goal of serving them on the cheapest possible ring.  One of the implications of using SONET

equipment is that all of the links on the ring must have the same capacity, which we refer to as

the capacity of the ring.  Not surprisingly, larger rings cost more, so building the cheapest ring

boils down to determining the minimum capacity ring that satisfies the demands.  In practice,

rings are deployed in small number of discrete sizes, and we would select the smallest one that

meets or exceeds the minimum capacity requirement to afford survivability.  Thus, it is actually

this minimum capacity requirement that DRSP seeks to determine.

DRSP represents the operation of SONET equipment with constraints that govern the way point-

to-point demands utilize ring capacity.  One such constraint, that we refer to as the “slotting

constraint”, requires that each unit of demand stay in the same "slot" throughout its path on the

ring.  That is, if the units of capacity are numbered, 1, 2, 3,..., then a "slot" is defined to be the
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unit of ring capacity associated with a specific number.  This corresponds to terms like "channel"

or "band" in radio or microwave transmission, or a "lane" in a highway or racetrack.  Certain

equipment can only keep track of a particular demand if it does not change slots within its route.

Such equipment is said to require “time-slot” assignment of demands.  In contrast, equipment

that allows movement of demand between slots is said to have time-slot interchange capability.

In particular, we note that the add-drop multiplexers commonly deployed in rings do, in fact,

require that each unit of demand be assigned to a single slot along its entire route.  Failure to

model this slot assignment may lead to selection of an infeasible ring size.

A second constraint that is often imposed by telecommunication carriers dictates that demands

cannot be "split" in their routing.  That is, they must be routed entirely clockwise or counter-

clockwise on the ring.  The “Ring Loading Problem”, studied by [CS94] and [SSW95], is the

variant of the ring sizing problem that forbids the splitting of demands but does not impose slot

assignments.  The DRSP formulation that we now state includes both types of constraints.

3.1. Notation

Consider a ring containing nodes labeled 1,2,...,n (proceeding clockwise), and edge set E =

{(1,2), (2,3),..., (n-1,n), (n,1)}.  Suppose that every edge in E has the same capacity “budget”, C.

(The value of C must be at least as large as the minimum number of slots required, but is not

necessarily equal to that value.)  It is possible to number the capacity units in each link 1,2,...,C,

where slot c is the particular unit of ring capacity labeled with the number c.  The ring is to be

used to satisfy K different “point-to-point demands” between the nodes.  Each demand comes

with a pair of distinct end-points, node i and node j (i<j), and a demand quantity d. A pair of

nodes may have any number of distinct point-to-point demands between them.  For each demand

k, we define E
+
(k) to be the set of edges visited if the demand is routed in the clockwise

direction.  E
-
(k) is the complementary set of edges associated with the counter-clockwise route.

For instance, if demand k is between node i and node j, then E
+
(k) is {(i, i+1), (i+1,i+2)…(j-1,j)}

and E
-
(k) is {(j,j+1),..., (n,1),...(i-1,i)}.  Note that the clockwise routing never uses edge (n,1),

while the counter-clockwise routing always uses it.
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For each edge e on the ring we define K
+
(e) to be the set of demands {k | e ∈ E

+
(k)}, i.e., the set

of demands that would pass edge e if routed clockwise.  Similarly, K
-
(e) is the set of demands

that would pass edge e if routed in the counter-clockwise direction.  Further, we assume that a

demand does not route over its endpoints in either the clockwise or counter-clockwise routing.

Notice that removing any two edges in the cycle cuts the network into two components. Let

D(e,f) be the set of demands whose endpoints are separated by the cut formed by edges e and f.

Let T(e,f) equal the total amount of demand in D(e,f). Finally, let e*, f* denote the edges in a cut

that separates the maximum total demand and let T*=T(e*,f*).

3.2. DRSP Formulation

The objective in the Demand Routing and Slotting Problem is to route all of  the point-to-point

demands on the ring while utilizing as few slots as possible. The constraints are that each

demand must be routed entirely in one direction and that no demand can change slots within its

route.  The decision variables for the problem are defined as follows:  Let  yk  be a variable

whose value is 1 if demand k is routed clockwise, or 0 if it is routed counter-clockwise.  Let zc be

a variable set to 1 if  slot c on the ring is utilized, or 0 if it is not.  Let x+
(k,c)  be a variable

set to 1 if any unit of demand k is routed clockwise using slot c, or 0 if none are. Finally, let

x
-
(k,c) be a variable set to 1 if any unit of demand k is routed counter-clockwise using slot c, or 0

if none are.

Formulated as a variant of an integer multi-commodity flow problem, DRSP can be stated as

follows:

Minimize  C*   =    Σc zc

  subject to:

∑c x
+(k,c) =  dk  yk   k=1,...,K

∑c x
-
(k,c) =  dk  (1-yk)   k=1,...,K

∑k∈ K+(e)  x
+(k,c) + ∑k∈ K-(e)  x

-
(k,c) ≤  zc

   
           e=1,...,n; c=1,...,C

 x+(k,c),  x
-
(k,c),  zc,  yk ∈{0,1}
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The first two constraints coupled with the integrality constraints state that, for each demand k, dk

slots are utilized and that all of the demand units are routed in either the clockwise or counter-

clockwise direction. The third constraint states that the demand units assigned to a particular slot

on the ring cannot overlap at any edge.  We point out that there are a number of alternative

formulations for DRSP; we selected this particular one for its simplicity.  Alternative

formulations may include additional constraints that strengthen the formulation for linear

programming-based solution methods, but these issues are not addressed in this paper.

DRSP is a computationally difficult problem.  A proof of the following result mimics the one in

[CS94].

Theorem 1: DRSP is NP-hard.

Theorem 1, combined with the fact that the ring sizing component of a planning tool like the

SONET Toolkit [CDSW95] may be called thousands of times during a network planning session,

makes heuristic methods a natural (and warranted) way to proceed.

Several variations of the DRSP model may arise because of differing assumptions about the

capabilities of  equipment being represented or because of different requirements on the solution.

The most realistic variants are still computationally difficult.  The “Ring Loading” problem is

one such variant that relaxes the slotting constraints but still requires each demand to be routed

entirely in one direction.  Ring Loading is described in greater detail in Section 5.4.  One

polynomially solvable variant of DRSP may be viewed as a relaxation of Ring Loading in which

the demands are allowed to split into integral parts to utilize both the clockwise and counter-

clockwise paths.  This case can be modeled as an instance of Ring Loading with unit-sized

demands. For instance, if the demand between a pair of nodes is equal to d, then d individual

unit-sized demands can be represented in the formulation.  It turns out that this variant is

equivalent to an integer multi-commodity flow problem on a ring network which was shown to

be polynomially solvable for a more general class of networks that includes rings in [Fra85]. The

specific case of ring networks is described in [FNSST], [VSKW96], and [SSW95].
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3.3. The Linear Relaxation of DRSP

If we relax both the slotting constraints and the one-way-routing constraints, then our constraints

must simply ensure that the demands are routed.  This problem is equivalent to a continuous

variable multi-commodity flow problem on a ring network.  It allows for any fraction of the

demand units to be routed in the clockwise direction while the remainder must be routed in the

counter-clockwise direction.  This problem is a linear program that can be used to provide lower

bounds on the optimal value of DRSP and can also be used to suggest feasible solutions for

DRSP, which we discuss in Section 5.3.  This linear relaxation of DRSP can be formulated as

follows:  let xk represent the amount of demand k (possibly fractional) routed in the clockwise

direction.  The total capacity required for the ring to be capable of satisfying  the demands is the

solution to the linear relaxation problem [LRP] stated as follows:

Minimize z

  subject to:

∑k∈ K
+

(e)  xk  +  ∑k∈ K
−

(e)  (dk - xk)   ≤   z
   

           e = 1,...,n

0 ≤  xk ≤ dk

Since this is a linear program, we know that it is polynomially solvable.  However, solving LRP

using standard LP techniques does not take advantage of the problem structure afforded by

routing in such a simple network. Specialized polynomial-time algorithms for this relaxation of

DRSP have been proposed in [VSKW96] and [SSW95].  Both of these approaches make use of

results presented in [OS81] for a more general class of networks. The results presented in [OS81]

imply the following properties of the solution to the linear program.

LRP Properties:  The optimal solution to LRP has the following properties:

i)  The optimal objective value, z*, is equal to 1/2 T*.

ii) The demands dk  where k ∉ D(e*,f*)  are not split.  Further, they are routed in the direction

that avoids both edge e* and edge f*.

That is, the cut with the largest demand across it determines the optimal value of the linear

program. Clearly, this value, z*, provides a lower bound to the required capacity for the more
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restrictive versions of DRSP.  This bound on the objective of DRSP is the tightest possible,

because there is an instance for which the bound is achieved.  Consider the case where there is a

single demand unit between node i and node i+1, for i = 1 ... n-1 and between node n and node 1.

(An example where n=6 is shown in Figure 2.)  Clearly the optimal solution to DRSP is 1

because the demands can be satisfied using a single slot. The value of T* is 2 because T(e,f) is 2

for any pair of edges e and f, so the optimal solution to the linear relaxation, z*,  is 1.

1 2

3

45

6

Figure 2: 6 demands that occupy one slot

3.4. DRSP Components

An instance of DRSP may be viewed as having two components. The “Routing” component is to

determine, for each of the K demands, whether to route in the clockwise or counter-clockwise

direction. The “Slotting” component is to find an assignment of each unit of the routed demands

to individual slots so that the total number of slots used is minimized. Clearly, there are 2K

possible solutions to the Routing Problem.  The objective of DRSP is to select a particular

routing that minimizes the number of slots required in the associated slotting problem.

These components are not separable in an optimal approach to DRSP, but since each has been

studied previously, results about each of their solutions can be incorporated into an intuitively

appealing heuristic approach to DRSP.  Such an approach would be a “two-phased” method in

which a routing is determined in the first phase and a slotting based on this particular routing is

determined in the second.  In the next two sections, we discuss the components of routing and

slotting, and we discuss the quality of resulting heuristics for DRSP.

4. The Slotting Problem
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We begin our discussion with the Slotting Problem and assume that some solution to the Routing

Problem is provided. That is, each demand is provided with a direction on the ring. For any such

solution, the objective of the Slotting Problem is to place the individual demand units into as few

slots as possible, while avoiding “collisions”.  If two or more demand units are assigned to the

same slot, they cannot overlap at any edge.

Observation 1: The Slotting Problem is equivalent to optimally coloring the vertices of an

associated circular arc graph.

We demonstrate this connection by noting that a given routing of demands around a ring may be

viewed as a collection of arcs on a circle. The graph associated with overlaps in such a collection

of arcs is called a “circular arc graph” (CAG) and is constructed as follows: Associate a vertex in

the CAG with every unit of routed demand (i.e., circular arc) and place a link in the CAG

between any two vertices whose associated routings overlap at any edge. Figure 3 provides an

example of a demand routing and its associated CAG.

A

B C

D

E
F

D E

F

A

B

C

Figure 3: A demand routing and its associated CAG.

A vertex coloring of a graph is any assignment of colors to vertices such that no two adjacent

vertices are assigned the same color.  Since nodes in the CAG correspond to demand units, and

two nodes in the CAG are adjacent precisely when their associated demands overlap, we see that

a feasible coloring in the CAG is equivalent to a feasible slotting for the demands.  Thus, by

finding the minimum coloring in the associated CAG, we find the optimal slotting.  The problem

of finding the chromatic number of an arbitrary CAG, and hence, the minimum number of slots

for an arbitrary set of routed demands, is NP-hard [GJMP].
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However, a particular subset of circular arc graphs, called “interval graphs”, can be optimally

colored in linear time.  An interval graph is the overlap graph associated with a set of intervals

along a line.  A CAG in which there is at least one point on the circle that is not covered by an

arc is an interval graph.  For our problem, an interval graph is formed whenever there is a link or

node that has no demand routed across it.

An interval graph can be optimally colored using a simple greedy algorithm that proceeds along

the range from left to right and assigns the first available color to each new interval encountered.

The chromatic number of an interval graph is equal to the maximum overlap at any point along

the interval, ([Gol80]).  If we define the “load” on an edge of the ring to be the number of

demand units routed over it, the following can be said for the Slotting Problem:

Lemma 1: The optimal number of slots, when the routing is equivalent to an interval graph, is

equal to the maximum of the loads experienced at the edges of the ring.

The simplicity of interval graph coloring is exploited in a well-known heuristic for coloring

arbitrary circular arc graphs proposed in [Tuck75].  The routine, adapted for the Slotting

Problem, is as follows:

Slotting Heuristic:

Step 1:  Find the node i having the least overlapping demand.  Place each of the overlapping

demand units into an empty slot.

Step 2:  The remaining demand units form a set that corresponds to an interval graph.  These

demands can be slotted by using the linear time interval graph coloring scheme that proceeds

around the ring (in either direction) starting at node i and assigns the first available slot to each

demand unit encountered.

For the case where the routing of demands corresponds to an interval graph, this heuristic

provides an optimal coloring.  In the more general cases, the number of slots used by this

heuristic is within twice the optimal number ([Tuck75]).

5. The Routing Problem.
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We now address the problem of determining a routing for a given set of demands.  Once a

routing is established, the associated Slotting Problem can be solved (possibly heuristically) to

provide a feasible solution to DRSP, and hence, an upper bound on its optimal objective value.

In this section, we present several methods for constructing routings  and then we apply the

slotting algorithms described in the previous section in order to obtain DRSP solutions with

provable quality bounds.

5.1. Edge Avoidance Routing

We present the routing heuristics in order of increasing complexity.  The simplest routing

approach is to route every demand in the same direction. Notice that if every demand were routed

in the clockwise direction, then edge (n,1) would have no load on it. That is, the edge is

“avoided” by the routing.  Thus, the routing forms an interval graph which can be optimally

slotted to provide a feasible solution to DRSP.  This routing method can be slightly generalized

by routing to avoid an arbitrary edge, instead of just (n,1).  We call the resulting routings “edge-

avoidance” routings and note that they share the following property:

Lemma 2: In a routing that avoids edge f, the load induced on edge e (e ≠ f) is equal to T(e,f).

Proof:  Let L(e) denote the load on edge e.  Note that L(e) ≥  T(e,f) because every demand in

D(e,f) must, by definition, cross the cut involving e and f.  Since none cross edge f, they must all

route over edge e.  Now note that no demand that is not in D(e,f) is routed over either e or f in

this routing.  To see this, observe that both endpoints of a demand that is not in D(e,f) lie on the

same side of the cut.  Thus, if such a demand were routed over edge e, it would also have to be

routed back over edge f, which is not possible.  Thus, the demands routed on e are precisely those

in D(e,f) so L(e) = T(e,f).      

Lemma 3:  The routing that avoids edge f induces a load of no more than 2z* on any edge.

Proof:  T(e,f) ≤  T* = 2z*, for all e, so the result follows immediately from Lemma 2.      

Lemma 4:  For any edge f, the routing that avoids edge f can be slotted using no more than 2z*

slots.

Proof:  Since the routing that avoids f forms an interval graph, Lemmas 1 and 3 provide the

result.       
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By combining edge-avoidance routing with an algorithm for interval graph coloring, we can see

that it’s easy to construct feasible solutions to DRSP that require no more than 2z* slots.  These

solutions provide a bound on the objective of DRSP.

Theorem 2: The optimal objective to DRSP, C*,  is bounded by  T* = 2 z*.

Proof:  Consider routing all demands in a clockwise direction so that edge (n,1) is avoided.  This

is an edge-avoidance routing, which Lemma 4 assures can be slotted using no more than 2z*

slots.  Since there is a feasible solution whose value is no more than 2z*, we have that C* ≤
2z*.

We point out that the bound on the objective of DRSP provided by Theorem 2 is the tightest

possible, because there is an instance for which C* = T*.  Consider the case where the number of

nodes is even, i.e., n = 2m.  Suppose there is a single demand between nodes i and i+m, for

i=1,...,m, as illustrated in Figure 4 when m=3.

1 2

3

45

6

Figure 4: Demands that require separate slots

Notice that each of the m demands overlaps with every other demand  so that m slots are required

to prevent collisions, regardless of the routing. Since the value of T* in this case is also equal to

m, the bound is tight.  Note that this implies that in assessing the performance of DRSP heuristics

with respect to z*, 2z* will be the best performance guarantee we can hope to achieve. The edge-

avoidance heuristic provides a very simple method for obtaining DRSP solutions that are within

this bound.  We can be somewhat more precise by noting that a ρ -approximation algorithm for

DRSP is a polynomial-time algorithm guaranteed to deliver a solution that requires at most ρ

times the optimal number of slots.  Since determining an edge-avoidance routing and coloring the

resulting interval graph can be done in polynomial time, and since the resulting solution is

guaranteed to use T* ≤  2C* slots, combining the two algorithms yields a 2-approximation
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algorithm for DRSP.  Furthermore, the example in Figure 2 demonstrates that ρ  cannot be

reduced from 2 because the edge-avoidance routing requires two slots, when the optimal requires

just one.

In a practical setting, we might want to apply the edge-avoidance routing method several times in

succession in the hope of finding progressively better solutions.  Since the number of ring nodes

is relatively small, that suggests the following simple iterative heuristic for obtaining solutions to

DRSP:  calculate the number of slots required for routings that avoid each of the edges in the ring

and use the one that requires the fewest slots.  Let S(f) denote the number of slots required by a

routing that avoids edge f. Let f  be the edge for which S( ⋅ ) is minimized. Let e be an edge for

which the load in the routing that avoids f  is S( f ). We know that S( f ) = T(e, f ) ≤ T*.  In

some cases, the total number of slots required by a solution obtained in this fashion may be

considerably smaller than T*.  For instance, consider the following result.

Theorem 3:  Given a routing R whose maximum link load is L and whose minimum link load is

l, there is an edge-avoidance routing whose load is no more than L+l.

Proof:  Suppose that R induces load l on edge e.  If we reverse the direction of all demand routed

over e, we now have a routing that avoids edge e.  At worst, we have increased the load on every

edge other than e by l.  Therefore, we have constructed an edge avoidance routing whose load is

at most L+l.         

5.2. Weight-based Routing

Edge-avoidance routings are special cases of a more general class of “weight-based” routings

that we consider now.  In a weight-based routing method, each edge in the ring is assigned a non-

negative weight.  In a “positive-weight” routing, each of the edges is assigned a strictly positive

weight.  Given a set of weights, each demand is routed in the direction whose edges have

minimum total weight.  Ties can be broken according to some selection rule.  We adopt the rule

that ties are routed in the direction that contains the fewest edges, and if there is still a tie, it may

be broken arbitrarily.

Notice that the “edge-avoidance” method is a special weight-based method that can be

implemented by assigning a weight of 1 to the avoided edge and a weight of 0 to the remaining
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edges.  The popular “minimum-hop” routing (the routing that traverses the fewest edges) is a

weight-based routing method that is effected by assigning a weight of 1 n  to each edge.

Weight-based methods offer heuristics that are intuitively more appealing than the simpler edge-

avoidance methods and they still offer a good performance bound.  In the remainder of this

subsection, we describe the properties of weight-based routings and their associated slottings.

Our goal is to establish the result that the entire class of weight-based routings can be slotted

using no more than 2z* slots.  We begin by introducing a property that, in fact, guarantees the

result.

To begin, we will follow the description in [SSW95] and consider the demands geometrically, so

that each can be viewed as a chord of a circle representing the ring.  Given this representation,

two demands are said to be either parallel or crossing.  For instance, demands between i and j

and k and l cross if their indices are all distinct and exactly one of i or j lies in (k,l), otherwise the

demands are parallel.  Figure 5 provides an example.

1 2

3

45

6

1 2

3

45

6

Crossing Parallel

Figure 5: Example of crossing and parallel demands

An edge that lies between two parallel demands is said to be “between” them.  In the example in

Figure 5, (3,4) is between the two parallel demands.

Property 1:  (Parallel Routing)  We say that a routing R has the parallel routing property if

there is no link that is between two parallel demands that carries load from both of them.

We will say that a routing that has the parallel routing property is a “parallel routing”. The

parallel routing property assures that the routing of any two demands can overlap in at most one

continuous interval on the ring.  To see this, note that crossing demands overlap at exactly one

interval in their routing, regardless of which routes are selected.  Parallel demands exhibit three
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routing cases that are illustrated in Figure 6.  They are: 1) the routings do not overlap; 2) one

routing contains the other; or 3) the routings overlap only the ends.  The parallel routing property

assures that the third case does not occur.  We state this more formally, in the following lemma.

Non-overlapping
parallel demands

Parallel demands
containing each other

Parallel demands that
overlap only at their ends

Figure 6:  Examples of routing parallel demands.

Lemma 5: No two demands in a parallel routing overlap in two disjoint intervals.  (Thus, the

third case illustrated in Figure 6 cannot occur in a parallel routing.)

Proof::  First, note that crossing demands cannot overlap in more than one interval, so we need

only consider parallel demands. Thus, assume that we have parallel demands (i,j) and (k,l), as

illustrated in Figure 7.  There may be links between the two demands on either side.  For

simplicity, we’ll use label e to represent (possibly several) links between the demands on one

side and f to represent links between the demands on the other side.  (See Figure 7.)  It may also

be the case that either e or f is empty.  Finally, let’s assume that the demands do not have both

endpoints in common (i.e. e and f are not both empty).  If they have the same endpoints then they

clearly overlap completely or not at all.  Without loss of generality, we can further assume that

node i is distinct from k and l and that it is 1, so that i<j ≤ k<l.  Now, there are only four

possibilities to consider.  If both demands route clockwise, they do not overlap.  If one routes

clockwise and the other routes counter-clockwise, then the counter-clockwise routed demand

contains the clockwise one.  If both demands route counter-clockwise, they would overlap both e

and f, but these edges are between the two demands, so this cannot happen in a parallel routing

unless both e and f are empty (in which case the endpoints for the two demands were the same

and they do not overlap anyway).     
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Figure 7: Two parallel demands in ring.

We can now show that a weight-based routing that applies the stated tie-breaking criterion is a

parallel routing.

Theorem 4:  A positive weight routing is a parallel routing.

Proof:  To demonstrate that this is the case, assume the opposite so that we may have two

parallel demands X and Y that each route over an edge that is between them in a positive-weight

routing R.  Let’s let A denote the edges that are between the two demands on one side and let C

denote the edges between them on the other side, such that at least one of A and C is non-empty.

Finally, let B denote the remaining edges in the routing of X and let D denote the remaining

edges in the routing of Y, as illustrated in Figure 8. The routing of X is made up of segments A,

B, and C and the routing of Y is made up of segments A, D and C.  If we let w() denote a weight

function so that w(A) is the weight of segment A, then the weight of routing X is w(X) = w(A) +

w(B) + w(C).  Since X is a weight-based routing, we know that

w(A) + w(B) + w(C) ≤  w(D).

Similarly for Y, we know that

w(A) + w(D) + w(C) ≤  w(B).

Together these two statements imply  that

w(A)+w(C) ≤  0,

which contradicts the assumption that R is a positive weight routing.       
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Figure 8

Corollary 1:  A weight-based routing that applies the fewest hop criterion to break ties is a

parallel routing.

Proof::  Using the notation from the previous theorem, the only way for parallel demands X and

Y to both route over edges that are between them is for the weight on those edges to be zero.  In

such a case, both routings for both demands have equal weight.  To break the ties, we apply the

fewest hop criterion.  By applying the fewest hop criterion, we are, in essence, routing all

demands that “tied” under the original weight function according to a new positive-weight

function, which guarantees parallel routing.       

We will now demonstrate that parallel routings can be slotted using at most 2z* slots.  In order to

prove this result, we use a property of parallel routings that is assured by the following lemma.

Lemma 6:  If R is a parallel routing, then for every edge e  there exists a node p such that there

is no demand routed over both e  and p.

Proof:  Without loss of generality, assume that e is (n,1), where n is the highest numbered node.

Let X denote the demand that extends the farthest past e moving clockwise and let Y denote the

demand that extends the farthest past e moving counter-clockwise.  Finally, let p2 denote the

endpoint of X on the clockwise side of e and let p1  denote the endpoint of Y on the counter-

clockwise side of e.  Thus, p1  is the lowest numbered node encountered by moving counter-

clockwise along a demand that overlaps e and p2  is the highest numbered node encountered by

moving clockwise along a demand that overlaps e.  Figure 9 provides an example.
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For the Lemma to be false, it must be the case that every node of the ring is overlapped by either

X or Y or both.  Assume that this is the case.  For all nodes to be overlapped by at least one of X

and Y, it must be true that p1 < p2 .  This means that X and Y overlap the interval ( p1 , p2 ).

Since R is a parallel routing and X and Y also overlap (n,1) we know that the two intervals

cannot be disjoint.  That is, either X must overlap [ p2 ,n], or Y must overlap [1, p1 ].  However,

that would imply that either X or Y overlaps every link of the ring, which cannot occur because

demands have distinct endpoints.      

1

n

demand Y

demand X

p
1

p
2

e

Figure 9

Lemma 6 provides that the demands that overlap edge e in a parallel routing form an interval

graph that leaves at least one node uncovered.  Note that when we reverse the direction of the

demands that overlap e, they must overlap every point that they did not overlap in the original

routing.  In particular, they must all overlap a node p that is provided by Lemma 6.  This property

is now used to demonstrate our main result.

Theorem 5:  If R is a parallel routing, then it can be slotted to provide a solution to DRSP that

requires no more than T* = 2z* slots.

Proof:  Let e  denote the edge that has the maximum load under routing R and let L denote this

amount.  Let l  denote the minimum load induced by R at any point in the ring. Further let D( e )

denote set of demands that route over edge e  in R.

Notice that the routing that avoids e  differs from R only in its routing of the demands in D( e ).

Thus, the routing that avoids e is effected by reversing the direction of the demands in D( e ).

When we do this, Lemma 6 provides that they will all overlap a common node p.  Since the load
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on p was at least l in routing R, we know that the load on p in the edge avoidance routing is at

least L+l.  Lemma 4 assures that the edge avoidance routing can be slotted to provide a solution

to DRSP that requires at most 2z* slots, so L + l ≤ 2z*.

To establish the theorem, note that the slotting heuristic provided in Section 4 requires no more

than L + l slots for R.  It uses l slots for the demands overlapping the point of least overlap and

no more than L slots for the remaining demands.  Since L+l ≤ 2z*, we have the result.        

Corollary 2:  A weight-based routing (using an appropriate tie-breaking method) can be slotted

using no more than 2z* slots.

Proof:  The result follows directly from the fact that weight-based routings are parallel

routings.

The slotting that demonstrates the result of Theorem 5 is obtained using the algorithm given in

the previous section [Tuck75].  This is clearly a polynomial-time algorithm for slotting.  Since

weight-based routing can be performed in linear time, the result of Corollary 2 assures that

weight-based routing followed by the basic slotting algorithm provides a 2-approximation

algorithm for DRSP.  Weight-based routings include edge-avoidance routings, so we know that

the factor of two cannot be reduced.  In section 5.4, we demonstrate that this is also the case for

positive-weight routings.

5.2.1. Real-time Routing and Slotting

Weight-based schemes, such as minimum-hop, are widely used in practice because they require

no off-line computation.  Once a weighting is established, the routing for each demand becomes

fixed and is independent of the routing of other demands.  Thus, weight-based  routing is an “on-

line” method for routing.

If we combine edge-avoidance routing with an on-line scheme for interval graph coloring

[KT81], we have an on-line method for obtaining DRSP solutions.  On-line algorithms for

interval graph coloring can be guaranteed to deliver solutions that use no more than 3 times the

optimal number of colors, which is best possible [KT81].  Since edge-avoidance guarantees that

the resulting interval graph has a maximum load of no more than 2z*, the combined approach

delivers a solution to DRSP that uses no more than 6z* slots.
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We can also combine more general weight-based routings with an on-line algorithm for circular

arc graph coloring [MHR93] to obtain a second on-line approach for DRSP.  The CAG coloring

algorithm [MHR93], however is only guaranteed to deliver a solution that is within a factor of 4

of the optimal.  This combined with the fact that we cannot guarantee that an optimal CAG

coloring will require fewer than 2z* colors implies that this method will have a worse theoretical

performance than the simpler one described above.  However, it may perform well in practice.

The important issue of real-time performance of algorithms for routing and slotting has recently

begun to be addressed.  Some initial simulation studies of real-time routing and slotting have

been conducted and described by Wilson [Wil95].

5.3. Routing based on the Linear Relaxation Problem

In the context of SONET Ring technology, various approaches to demand routing have been

investigated [CS94], [SSW95], [VSKW96].  Each of them solves some relaxation of DRSP that

does not include slotting, but the solutions obtained by these methods may still be of use in

constructing DRSP solutions.  In the remainder of this section, we consider two such methods.

The first is based on solving the linear relaxation problem (LRP) which relaxes both splitting and

slotting constraints.  The second is based on solving the Loading problem which relaxes only the

slotting constraints.  Unlike the previous routing methods whose route selections are independent

of the particular demands populating the ring, these methods tailor routing choices based upon

the demands provided.  That is to say that these methods may choose to route a particular point-

to-point demand either clockwise or counter-clockwise depending on the other demands that

need to be routed.

Since the Linear Relaxation problem LRP is a specially structured linear program that is

relatively easy to solve, it is reasonable to utilize its solution to suggest routings for at least some

subset of the demands in heuristic approaches to DRSP.  Recall that in the solution to the

relaxation, any demand dk  where k ∉ D(e*,f*) is routed in the direction that avoids both edge e*

and edge f*. The remaining demands may or may not be split between the two directions.  We

can build a routing from this one by maintaining the route chosen by LRP for any demand that

does not split and “unsplitting” the remaining demands.  One way to do this would be to simply
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route each demand entirely in the direction that contains the largest portion of the LRP routing.

(In case of a tie, we could choose either direction.)

It turns out that we don’t really need to worry about the particular unsplitting method that we use

if our goal is simply to get a quality bound on DRSP solutions derived from the LRP routing.

Both [SSW95] and [VKSW96] provide polynomial-time algorithms that solve LRP and split very

few demands.  (They split at most n 2  of them.)   In addition, [SSW95] shows that the routing

they obtain exhibits the parallel routing property.  As a result, any unsplitting of their solution is

also a parallel routing.  We can see this by observing that an unsplitting introduces no new

routes.  It simply selects a subset of those used in the given solution.  Therefore, if the given

solution is a parallel routing, any unsplitting of it must be as well.  Since the algorithm in

[SSW95] enables us to compute a parallel routing that solves LRP, the following theorem is an

immediate consequence of Theorem 5.

Theorem 6:  There exists a solution to LRP that can be unsplit arbitrarily and then slotted using

no more than 2z* = T* slots.

The [SSW95] algorithm for routing combined with arbitrary unsplitting and the Slotting

algorithm in Section 4 provides a polynomial-time approach for obtaining a feasible DRSP

solution based on the linear relaxation.  Since Theorem 6 assures that these solutions require no

more than twice the optimal number of slots, the combined approach is a 2-approximation

algorithm for DRSP.

5.4. Routing based on the Loading Problem

Finally, we consider building solutions for DRSP from those of the “Ring Loading” problem.

The Ring Loading problem arises when we assume that the equipment placed at the nodes of the

ring is capable of performing “slot interchanges”.  In such cases, it is not necessary that a demand

stay in the same slot within its route, so the slotting constraints can be removed.  The Ring

Loading problem refers to this version of DRSP in which the slotting constraints are removed but

splitting is still forbidden.  Since a particular routing of the demands puts a load on each edge

that is equal to the number of demand units passing through it, the objective in the Loading

problem is to determine the routing that minimizes the maximum of the loads experienced at the
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edges. The Loading problem is described in detail in [CS94] and [SSW95]. It is NP-Hard, but

some reasonable heuristics are available.  In particular, [SSW95] offers an approach that assures

a solution whose load is no more than z*+ 3 2 D, where D is the amount of the largest demand,

and [CS94] describes a “dual-ascent” heuristic that seems to perform well in practice.

The Loading problem can be used in a heuristic approach to DRSP because one can assume that

a routing of demands that minimizes link loads would be likely to require a relatively small

number of slots as well.  Indeed, it is certainly true that optimal link load is a lower bound on the

number of slots required.  In the absence of a more “integrated” approach to DRSP, this method

is intuitively appealing.  The approach seeks a routing that induces a small link load and then

slots based on this routing.  Implicit in this approach is the assumption that link load provides a

good surrogate for the number of slots required.  While it seems intuitively reasonable that such a

method would perform better than a simple-minded scheme like edge-avoidance, theoretically its

performance is no better.  In the remainder of this section, we examine the theoretical

performance of methods that select a routing based on minimizing link load.  For the sake of

analysis, we ignore the fact that the Ring Loading problem is NP-hard and assume that we can

determine a routing that minimizes the maximum link load.

Theorem 7:  Let R* be a routing that minimizes the maximum link load and let L* be the

optimal load.  R* can be slotted using no more than 2L* slots.

Proof:  Assign slots to R* using the Slotting algorithm in Section 4.  So, let p be the point of

least overlap on the ring.  We know that the overlap at p is no more than L*, so the algorithm

assigns the demands that overlap p to L* slots.  The remaining demands form an interval graph

whose maximum overlap is no more than L*, so these demands can be assigned to L* slots by

interval graph coloring.       

The optimal slotting would be at least as good as the heuristic one obtained in the proof of

Theorem 7, so clearly C* ≤  2 L*.  Since 2 L* ≥ 2 z* = T* , the performance bound that we

demonstrate for this approach is no better than that of the considerably simpler "edge-avoidance"

heuristic.  While it may be possible to improve this bound to 2z*, the routing that minimizes load

is not necessarily a parallel routing, so we cannot employ Theorem 5 to do it.  Figure provides a

small example in which the minimum load routing is not a parallel routing.
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Figure 10:  Optimal load routing that is not a parallel routing

Finally, we can show that even if there were polynomial-time algorithms for solving the Ring

Loading problem and then coloring the resulting circular arc graph, the combined approach could

be no better than a 2-approximation algorithm, i.e., no better than edge-avoidance.  This is

because examples exist for which the routing associated with the optimal loading requires

relatively many slots.  We now illustrate the point.

Observation 2: Routing optimally with respect to load followed by slotting optimally may yield

a solution to DRSP that uses twice the optimal number of slots.

We demonstrate this claim with an example.  Let m be an odd number and consider a ring with n

= 2m nodes.  The following demands must be routed in the ring: 1) two individual unit-sized

demands between node i and node i+m, for i=1..m; and 2) a demand for two units between node i

and node i+1, for all odd i.

Let L(R) denote the load induced by routing R and let R* be a routing that minimizes load.

Since the linear program LRP is also a relaxation of the Loading problem, the following bound

applies: L(R*) ≥ z* = T*/2 = (2m+2)/2 = m+1.  Thus, the optimal load is at least m+1.

Consider the following routing of demands.  Each of the demands between node i and node i+1 is

routed in the clockwise direction along edge (i,i+1).  Both units of the unit-sized demands are

routed in the direction that overlaps the fewest “short” demands.  (An example with m=3 is

illustrated in Figure 11.)  The maximum load associated with this routing is m+1, so it is optimal

to the Loading problem.  (Moreover, it is the unique optimal.)
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Figure 11: Demand routing that yields optimal load.

In the solution to the associated Slotting Problem, each of the unit-sized demands must be placed

in its own slot, otherwise it would collide with another unit-sized demand, so the number of slots

associated with this routing must be at least 2m.

A different feasible solution to DRSP routes one of the unit demands between node i and node

i+m in the clockwise direction and the other unit in the counter-clockwise direction. The

remaining demands are routed across edge (i, i+1).  (See the illustration in Figure 12.)  The load

associated with this routing is m+2, i.e., not optimal to the Loading problem, but with this routing

the two unit-sized demands between a pair of nodes can share the same slot, so the total number

of slots required is m+2.  The ratio between the two solutions is 2m/m+2 which approaches 2 as

m increases, so the performance bound is asymptotically tight.  This illustrates that any method

based on the optimal load routing can be no better than a 2-approximation algorithm.      

                

1 unit each direction

2

22

Figure 12: Routing that requires m+2 slots.

Finally, in section 5.2 we showed that weight-based routing combined with the standard slotting

algorithm provides a 2-approximation method for solving DRSP.  We showed that the factor of 2
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cannot be improved for non-negative weights.  This example enables us to verify that this is also

the case for positive-weight routings.  By assigning weight w to even numbered edges and weight

2w to odd numbered edges (where w = 1 3m ), the weight-based routing for this example is the

same as the optimal load routing that requires 2m slots.  Thus, the performance bound is also

tight for positive-weight routings.

6. Concluding Remarks

The introduction to this paper describes some general approaches used to protect the demands in

a communications network.  A “divide and conquer” scheme to address this complex and

difficult problem gives rise to a number of subproblems, some of which are themselves quite

complex.  DRSP represents one such problem.  The remainder of the paper describes this new

problem in detail and presents some basic heuristic approaches to solve it.  Further study of the

problem will likely yield more sophisticated and effective heuristics for its solution. In an

approach to solve a typical network design problem, there are a large number of potential rings to

consider. A "Route and Slot" heuristic, like any of the ones described in this document, may be

called as a subroutine hundreds, or even thousands, of times.  So, we recommend restricting

attention to relatively simple heuristics that find their solutions in a short amount of time.  Since

z*, the optimal objective value for the linear relaxation, and T*, the maximum total demand

across a cut, are the factors that contribute to the tightest bounds on C*, the optimal objective

value of DRSP, it is reasonable to use these values to establish performance bounds on the

feasible solutions obtained by such methods.

Recall that the true objective of the Routing Problem is to give rise to a circular-arc graph with

the smallest possible chromatic number, hence the smallest number of required slots.  The

routing methods whose objective is to minimize the maximum load on the edges have been

suggested because they results in graphs with what is hoped to be a small chromatic number.  If

there is an alternative method for quickly anticipating the chromatic number of an arbitrary

circular-arc graph or a better surrogate such as the maximum clique size, an alternative objective
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to the Routing Problem might be appropriate.  There is reason to believe that this could provide

superior solutions to DRSP.
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