Telecom Applications of OR

Tami Carpenter Telcordia Technologies

Why does the phone company have operations researchers?

Choices:

- a) We are good at remembering acronyms
- b) Habit
- c) To improve their bottom line
- d) All of the above

What types of problems do we work on?

- Network Design & Planning
 - What equipment do we put in the network & where?
 - How much capacity do we need?
- Network Provisioning
 - How do we allocate network resources?
 - How do we route traffic in the network?
- Network Analysis
 - How reliable is the network?
- Network Security
 - How do you detect network attacks?

Planning DSL and Beyond: One of my favorite problems

- What would you rather have high speed or dial up?
 - More IS better...
- Before the mid 90s, it was ALL dial-up
- How could the telephone companies upgrade their network to compete with cable?
 - DSL
 - □ Fiber-to-the-curb
 - Other newer choices

A real access network in Iowa

Key features of the access network

Logically, it looks like a TREE
It is "rooted" the central office
The houses are the leaves
Intermediate nodes are poles

Issue: some of the houses are too far from the CO to get broadband service

Access network evolution

central office

Before

copper wire

house

Before 1990's:

- Copper wires carry electrical signals
- Signal degrades with distance
- Can't get enough through!

□ Fiber optics:

- Huge amount of information
- Over long distances
- With little degradation

Broadband access networks use fiber optic cables near the CO

Sample of broadband "flavors"

Installing Fiber

- When a house is too far, we install fiber part of the way from the CO
- When we install fiber, we need a "conversion box" to translate between electrical & optical
- Conversion boxes are placed at telephone poles
- There is a limit on allowable distance between house and conversion box

A better solution

 Conversion boxes are expensive, so we want to use as few as possible

The constraints

- A house must be within some prescribed distance of it's CB
 - Distance is along the tree
- A CB can serve only a prescribed number of houses
 - □ We'll ignore this for a while...

The Problem (Version 1)

- Given a tree whose links have associated distances, place CBs at the nodes of this tree and assign each leaf (house) to a CB so that no leaf is more than distance *D* from its assigned CB and the number of CBs is minimized.
 - Assign each house to a CB that is within the maximum allowable distance (feasibility)
 - Minimize the number of CBs

A small example

- Each link is 1 unit long
- A house can be no more than 3 units from its CB

Solution uses 7 CBs

An optimal algorithm

- Sort the houses so that they are in order of decreasing distance to the root
- Place a CB as close to the root as possible, given that it can still be reached by the first house on the list
- Attach any house within the allowable distance to be served by this CB and remove it from the list

An integer programming digression

Would we rather formulate and solve an integer program?

$$\begin{array}{ll} \boldsymbol{\mathcal{X}}_{ij} & \text{is 1 if house } i \text{ is assigned to a CB at pole } j \\ \boldsymbol{\mathcal{Y}}_{j} & \text{is the number of CBs placed at node } j \\ \text{Minimize: } & \sum_{j \neq j} \boldsymbol{\mathcal{Y}}_{j} \\ \text{s.t. } & \sum_{j:d(i,j) \leq D}^{j} \boldsymbol{\mathcal{X}}_{ij} = 1 \quad \forall i & \text{Every house is assigned} \\ & \sum_{i:d(i,j) \leq D} \boldsymbol{\mathcal{Y}}_{ij} & \text{Every house is assigned} \\ & \sum_{i:d(i,j) \leq D} \boldsymbol{\mathcal{Y}}_{ij} & \forall j & \text{Sufficient capacity at each pole} \\ & \boldsymbol{\mathcal{Y}}_{j} & \text{integer } \forall j \\ & \boldsymbol{\mathcal{X}}_{ij} \in \{0,1\} \quad \forall i, j \end{array}$$

The Problem (Version 2)

What about when CBs have fixed capacity?

- Place CBs at poles so as to
 - Minimize the total number of CBs
 - Assure that every house is assigned to a CB that is close enough
 - AND assure that no CB's capacity is exceeded
- Does our algorithm still work?

An example where it doesn't work...

- CB capacity = 3
- Distance limit = 4
- Where does the first CB go?

A definition

- Associate with each house a "high pole", which is the closest pole to the root that this house could reach
- This is as close to the root as you could place a CB to serve this house

The new algorithm

- Sort the houses so that they are in order of decreasing high-pole-to-root distance.
 - If there's a tie, put the houses closer to the root lower in the list
- Place a CB at the high-pole of the first house on the list
- Attach the first C houses that can be served by
 this CB and delete them from the list

Iterate

A few remarks

- This is an optimal algorithm
 - Paper by Jaeger & Goldberg, 1994
- It is a "greedy" algorithm
 - We only add a CB when we have to
- We start far from the leaves and work our way in
 - Does the other way make sense?
 - Does it make any difference which node is the root?
- There are a few subtleties...

What about this?

- Sort the houses so that they are in order of decreasing high-pole-to-root distance.
 - If there's a tie, put houses closer to the root lower in the list
- Place a CB at the high-pole of the first house on the list
 - Attach the first N houses that can be served by this CB and delete them from the list

Iterate

Can we just do everything in terms of high-pole distance?

An example

Some variations on this problem

- What about when there are several different CB sizes available?
 - This appears hard...subject of Mazur's PhD thesis
 - This is an important part of the "real problem"
- What about when you can place CBs at only certain poles?
- What about when some CBs already exist?
- What about when the graph is not a tree?
 - Uncapacitated version is a classic "hard" problem (dominating set)

The "real" problem

- Two key additions:
 - There are multiple different sized CBs for different costs
 - The choice of CB size is now part of the problem
 - Still looking for a fast, optimal algorithm for this!
 - There are additional contiguity constraints to promote more "maintainable" designs
 - Makes the multiple-facility problem tractable using dynamic programming
 - Paper by Carpenter, Eiger, Seymour & Shallcross, 2001

Contiguity constraints

 Assure that if two copper wires "meet" on their way to a CB, they will route to the same CB node

A related problem in the "core" network

Designing optical networks

- In today's optical networks, optical-electrical-optical (OEO) signal regeneration occurs at equipment at each node
 - Future networks will switch optically
 - Signal impairments limit feasible optical paths
 - constrain the number of consecutive optical nodes in a path
 - constrain the distance between OEO nodes in a path

Design problem: where do we provide OEO regeneration to assure that a feasible path exists between each pair of nodes?

Locating OEO at nodes

- Select the smallest set of OEO nodes that provides at least one impairment-feasible path between each pair of nodes
- A variant of the Connected Dominating Set Problem:
 - Create a graph G that has a link between every pair of nodes that can communicate without regeneration
 - Select a set minimum size set of (OEO) nodes such that every node not in the set is connected to a node in it
 - The selected set is a dominating set in graph G
 - This assures that each non-OEO node reaches an OEO node
 - ...and such that if we remove all nodes not in the set the remaining graph is connected
 - The selected set is a connected dominating set
 - This assures that OEO nodes can feasibly communicate

A sample solution

